gives a numerical approximation to the Fourier sine transform of expr evaluated at the numerical value ω, where expr is a function of n.

Details and Options

  • To use NFourierSinTransform, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
  • The numerical approximation to the Fourier sine transform of expr is by default defined to be NIntegrate[expr Sin[ω t],{t,0,}].
  • Different choices for the definition of the Fourier cosine transform can be specified using the option FourierParameters.
  • With the setting FourierParameters->{a,b}, the Fourier cosine transform computed by NFourierSinTransform is 2NIntegrate[expr Sin[b ω t],{t,0,}].
  • The parameter b in the setting FourierParameters->{a,b} must be numeric.
  • In addition to the option FourierParameters, NFourierSinTransform can also accept the options available to NIntegrate. These options are passed directly to NIntegrate.


Basic Examples  (1)

Numerical approximation for a Fourier sine transform:

Compare with the answer from symbolic evaluation: