GraphUtilities`
GraphUtilities`

LinkRankMatrix

As of Version 10, all the functionality of the GraphUtilities package is built into the Wolfram System. »

LinkRankMatrix[g]

returns the link rank of the graph g, in the form of a sparse matrix. The link rank of an edge u->v is defined as the PageRanks of u, divided by the out-degree of u.

更多信息和选项

  • LinkRankMatrix functionality is now available in the built-in Wolfram Language function LinkRankCentrality.
  • To use LinkRankMatrix, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
  • The following options can be given:
  • ToleranceAutomatictolerance used for convergence check
    TeleportProbability0.15probability of visiting random nodes
    RemoveSinksTruewhether to remove sinks by linking them with every node
  • The link rank of a link from vertex i to vertex j is defined as page rank of i, as given by PageRanks[g], divided by the out-degree of i.
  • The link rank reflects the probability that a random surfer follows that link.
  • LinkRankMatrix has the same options as PageRanks.

范例

打开所有单元关闭所有单元

基本范例  (2)

This shows a small network of web pages:

This calculates the link ranks:

LinkRankMatrix has been superseded by LinkRankCentrality:

Applications  (1)

This shows a small network of web pages:

This calculates the link ranks:

This replots the network with link rank information:

Wolfram Research (2007),LinkRankMatrix,Wolfram 语言函数,https://reference.wolfram.com/language/GraphUtilities/ref/LinkRankMatrix.html.

文本

Wolfram Research (2007),LinkRankMatrix,Wolfram 语言函数,https://reference.wolfram.com/language/GraphUtilities/ref/LinkRankMatrix.html.

CMS

Wolfram 语言. 2007. "LinkRankMatrix." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/LinkRankMatrix.html.

APA

Wolfram 语言. (2007). LinkRankMatrix. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/GraphUtilities/ref/LinkRankMatrix.html 年

BibTeX

@misc{reference.wolfram_2024_linkrankmatrix, author="Wolfram Research", title="{LinkRankMatrix}", year="2007", howpublished="\url{https://reference.wolfram.com/language/GraphUtilities/ref/LinkRankMatrix.html}", note=[Accessed: 03-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_linkrankmatrix, organization={Wolfram Research}, title={LinkRankMatrix}, year={2007}, url={https://reference.wolfram.com/language/GraphUtilities/ref/LinkRankMatrix.html}, note=[Accessed: 03-December-2024 ]}