MaximalIndependentVertexSet[g]
gives a maximal independent vertex set of an undirected graph g.
MaximalIndependentVertexSet[g,w]
gives a maximal independent vertex set of g with vertices weighted by w.


MaximalIndependentVertexSet
MaximalIndependentVertexSet[g]
gives a maximal independent vertex set of an undirected graph g.
MaximalIndependentVertexSet[g,w]
gives a maximal independent vertex set of g with vertices weighted by w.
Details and Options
- MaximalIndependentVertexSet functionality is now available in the built-in Wolfram Language function FindIndependentVertexSet.
- To use MaximalIndependentVertexSet, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
- MaximalIndependentVertexSet gives an (approximate) maximal set of vertices such that no two vertices form an edge. It treats the input as an undirected graph.
- The length of the vector w must be the same as the number of vertices in g.
Examples
Basic Examples (2)
This shows that the maximal independent vertex set contains three vertices:
MaximalIndependentVertexSet has been superseded by FindIndependentVertexSet:
Tech Notes
Related Guides
-
▪
- Graph Utilities Package ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2007), MaximalIndependentVertexSet, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html.
CMS
Wolfram Language. 2007. "MaximalIndependentVertexSet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html.
APA
Wolfram Language. (2007). MaximalIndependentVertexSet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html
BibTeX
@misc{reference.wolfram_2025_maximalindependentvertexset, author="Wolfram Research", title="{MaximalIndependentVertexSet}", year="2007", howpublished="\url{https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html}", note=[Accessed: 18-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_maximalindependentvertexset, organization={Wolfram Research}, title={MaximalIndependentVertexSet}, year={2007}, url={https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html}, note=[Accessed: 18-August-2025]}