MaximalIndependentEdgeSet
MaximalIndependentEdgeSet[g]
gives a maximal independent edge set of an undirected graph g.
Details and Options
- MaximalIndependentEdgeSet functionality is now available in the built-in Wolfram Language function FindIndependentEdgeSet.
- To use MaximalIndependentEdgeSet, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
- MaximalIndependentEdgeSet gives an approximate maximal set of pairwise nonadjacent edges of g.
- A maximal independent edge set of a graph is also called a maximal matching.
- The following option can be given:
-
Weighted False whether edges with higher weights are preferred when forming the maximal independent edge set
Examples
Basic Examples (2)Summary of the most common use cases

https://wolfram.com/xid/0jtkjspbhofnpfoxpmgbnr3-f7icyo

https://wolfram.com/xid/0jtkjspbhofnpfoxpmgbnr3-snp

https://wolfram.com/xid/0jtkjspbhofnpfoxpmgbnr3-pne

This shows that the maximal independent edge set contains three edges:

https://wolfram.com/xid/0jtkjspbhofnpfoxpmgbnr3-eor

MaximalIndependentEdgeSet has been superseded by FindIndependentEdgeSet:

https://wolfram.com/xid/0jtkjspbhofnpfoxpmgbnr3-qs9cop

https://wolfram.com/xid/0jtkjspbhofnpfoxpmgbnr3-1paa34


https://wolfram.com/xid/0jtkjspbhofnpfoxpmgbnr3-kn8gbn

Wolfram Research (2007), MaximalIndependentEdgeSet, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.
Text
Wolfram Research (2007), MaximalIndependentEdgeSet, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.
Wolfram Research (2007), MaximalIndependentEdgeSet, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.
CMS
Wolfram Language. 2007. "MaximalIndependentEdgeSet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.
Wolfram Language. 2007. "MaximalIndependentEdgeSet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.
APA
Wolfram Language. (2007). MaximalIndependentEdgeSet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html
Wolfram Language. (2007). MaximalIndependentEdgeSet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html
BibTeX
@misc{reference.wolfram_2025_maximalindependentedgeset, author="Wolfram Research", title="{MaximalIndependentEdgeSet}", year="2007", howpublished="\url{https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html}", note=[Accessed: 29-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_maximalindependentedgeset, organization={Wolfram Research}, title={MaximalIndependentEdgeSet}, year={2007}, url={https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html}, note=[Accessed: 29-April-2025
]}