WOLFRAM

As of Version 10, all the functionality of the GraphUtilities package is built into the Wolfram System. »

MaximalIndependentEdgeSet[g]

gives a maximal independent edge set of an undirected graph g.

Details and Options

  • MaximalIndependentEdgeSet functionality is now available in the built-in Wolfram Language function FindIndependentEdgeSet.
  • To use MaximalIndependentEdgeSet, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
  • MaximalIndependentEdgeSet gives an approximate maximal set of pairwise nonadjacent edges of g.
  • A maximal independent edge set of a graph is also called a maximal matching.
  • The following option can be given:
  • WeightedFalsewhether edges with higher weights are preferred when forming the maximal independent edge set

Examples

Basic Examples  (2)Summary of the most common use cases

This defines a small graph:

Out[3]=3

This shows that the maximal independent edge set contains three edges:

Out[4]=4

MaximalIndependentEdgeSet has been superseded by FindIndependentEdgeSet:

Out[2]=2
Out[3]=3
Wolfram Research (2007), MaximalIndependentEdgeSet, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.
Wolfram Research (2007), MaximalIndependentEdgeSet, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.

Text

Wolfram Research (2007), MaximalIndependentEdgeSet, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.

Wolfram Research (2007), MaximalIndependentEdgeSet, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.

CMS

Wolfram Language. 2007. "MaximalIndependentEdgeSet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.

Wolfram Language. 2007. "MaximalIndependentEdgeSet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.

APA

Wolfram Language. (2007). MaximalIndependentEdgeSet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html

Wolfram Language. (2007). MaximalIndependentEdgeSet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html

BibTeX

@misc{reference.wolfram_2025_maximalindependentedgeset, author="Wolfram Research", title="{MaximalIndependentEdgeSet}", year="2007", howpublished="\url{https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html}", note=[Accessed: 29-April-2025 ]}

@misc{reference.wolfram_2025_maximalindependentedgeset, author="Wolfram Research", title="{MaximalIndependentEdgeSet}", year="2007", howpublished="\url{https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html}", note=[Accessed: 29-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_maximalindependentedgeset, organization={Wolfram Research}, title={MaximalIndependentEdgeSet}, year={2007}, url={https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html}, note=[Accessed: 29-April-2025 ]}

@online{reference.wolfram_2025_maximalindependentedgeset, organization={Wolfram Research}, title={MaximalIndependentEdgeSet}, year={2007}, url={https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html}, note=[Accessed: 29-April-2025 ]}