GraphUtilities`
GraphUtilities`

MaximalIndependentEdgeSet

As of Version 10, all the functionality of the GraphUtilities package is built into the Wolfram System. »

MaximalIndependentEdgeSet[g]

gives a maximal independent edge set of an undirected graph g.

Details

  • MaximalIndependentEdgeSet functionality is now available in the built-in Wolfram Language function FindIndependentEdgeSet.
  • To use MaximalIndependentEdgeSet, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
  • MaximalIndependentEdgeSet gives an approximate maximal set of pairwise nonadjacent edges of g.
  • A maximal independent edge set of a graph is also called a maximal matching.
  • The following option can be given:
  • WeightedFalsewhether edges with higher weights are preferred when forming the maximal independent edge set

Examples

Basic Examples  (2)

This defines a small graph:

This shows that the maximal independent edge set contains three edges:

MaximalIndependentEdgeSet has been superseded by FindIndependentEdgeSet:

Wolfram Research (2007), MaximalIndependentEdgeSet, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.

Text

Wolfram Research (2007), MaximalIndependentEdgeSet, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.

BibTeX

@misc{reference.wolfram_2020_maximalindependentedgeset, author="Wolfram Research", title="{MaximalIndependentEdgeSet}", year="2007", howpublished="\url{https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html}", note=[Accessed: 03-December-2020 ]}

BibLaTeX

@online{reference.wolfram_2020_maximalindependentedgeset, organization={Wolfram Research}, title={MaximalIndependentEdgeSet}, year={2007}, url={https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html}, note=[Accessed: 03-December-2020 ]}

CMS

Wolfram Language. 2007. "MaximalIndependentEdgeSet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.

APA

Wolfram Language. (2007). MaximalIndependentEdgeSet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html