GraphUtilities`
GraphUtilities`

ToCombinatoricaGraph

As of Version 10, all the functionality of the GraphUtilities package is built into the Wolfram System. »

ToCombinatoricaGraph[g]

returns the Combinatorica representation of the graph g.

ToCombinatoricaGraph[g,n]

returns the graph g, adding additional unconnected vertices, if necessary, to create a graph with n vertices.

Details and Options

Examples

Basic Examples  (2)

This defines a simple graph:

This shows the Combinatorica object:

Use Graph to build graphs specified by a rule list:

Wolfram Research (2007), ToCombinatoricaGraph, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/ToCombinatoricaGraph.html.

Text

Wolfram Research (2007), ToCombinatoricaGraph, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/ToCombinatoricaGraph.html.

CMS

Wolfram Language. 2007. "ToCombinatoricaGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/ToCombinatoricaGraph.html.

APA

Wolfram Language. (2007). ToCombinatoricaGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/GraphUtilities/ref/ToCombinatoricaGraph.html

BibTeX

@misc{reference.wolfram_2024_tocombinatoricagraph, author="Wolfram Research", title="{ToCombinatoricaGraph}", year="2007", howpublished="\url{https://reference.wolfram.com/language/GraphUtilities/ref/ToCombinatoricaGraph.html}", note=[Accessed: 20-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_tocombinatoricagraph, organization={Wolfram Research}, title={ToCombinatoricaGraph}, year={2007}, url={https://reference.wolfram.com/language/GraphUtilities/ref/ToCombinatoricaGraph.html}, note=[Accessed: 20-January-2025 ]}