AnnuityDue

AnnuityDue[p,t]

represents an annuity due of fixed payments p made over t periods.

AnnuityDue[p,t,q]

represents a series of payments occurring at time intervals q.

AnnuityDue[{p,{pinitial,pfinal}},t,q]

represents an annuity due with the specified initial and final payments.

Details

Examples

open allclose all

Basic Examples  (3)

Present value of an annuity due of 10 payments of $1000 at 6% effective interest:

Future value of an annuity due of 5 payments of $1000 at 8% nominal interest compounded quarterly:

Future value of a 10-period annuity due with payments occurring twice per period:

Scope  (1)

Infinity may be used as the number of payment periods to specify a perpetuity due:

Applications  (3)

Value of a delayed annuity whose 7 payments start in 5 years:

At what annual effective interest is the present value of a series of payments of 1 every 6 months forever, with the first payment made immediately, equal to 10:

Find the accumulated value at the end of 10 years of an annuity in which payments are made at the beginning of each half-year for five years. The first payment is $2000, and each payment is 98% of the prior payment. Interest is credited at 10% compounded quarterly:

Properties & Relations  (1)

TimeValue takes a reference point argument for cash flows. This argument can be used with Annuity to simulate an annuity due:

Introduced in 2010
 (8.0)