BernoulliGraphDistribution
✖
BernoulliGraphDistribution
詳細とオプション

- ベルヌーイグラフは n 個の頂点を持つ完全グラフから始め,各辺を別々に確率 p のベルヌーイ試行で選ぶことで構築される.
- 使用可能なオプション
-
DirectedEdges False 有向辺を生成するかどうか - BernoulliGraphDistributionはRandomGraphやGraphPropertyDistribution等の関数で使うことができる.
例題
すべて開くすべて閉じる例 (2)基本的な使用例

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-yg5284


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-m4e2u


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-p6mva9


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-fza82x

スコープ (4)標準的な使用例のスコープの概要

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-2cq0pg


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-9dc2w5


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-y6wkjj


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-hso99s

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-3ac0m9

オプション (2)各オプションの一般的な値と機能
DirectedEdges (2)

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-gqk8aw


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-8uhitx

DirectedEdges->Trueと設定すると,有向ベルヌーイグラフが生成される:

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-4dexit


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-dixfdc

アプリケーション (3)この関数で解くことのできる問題の例
20人の幼児が幼稚園で最初の1週間を過ごした後で,2人の幼児が友達になる確率は0.2である:

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-x25twn

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-5xmvj4


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-2cevl5

15人が参加し各人が互いに雪玉を投げ合う雪合戦で,指定された参加者の雪玉に当る確率は0.4である:

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-tku48n

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-qbrfwv


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-kjnnhp


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-hwmcz8

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-csholl

100回実行した平均を求め,それを異なる頂点数でプロットする:

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-e1dn27

特性と関係 (6)この関数の特性および他の関数との関係

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-nrpf1s


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-c8umns


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-butrzb


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-rz508u


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-gh89c7


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-eqfhml


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-eycgqb


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-1xtiv2


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-marhig


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-bd3sp5
ベルヌーイグラフは の区間ではほとんど絶対に連結していない:

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-occ7ha


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-wzc18

BernoulliDistributionを使ってBernoulliGraphDistributionのシミュレーションを行う:

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-bt4sl1

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-c7539s

辺確率1の場合はCompleteGraphになる:

https://wolfram.com/xid/0e2z90anme68dm9zz2hm-wdlbp4


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-opdkdy


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-moijwf


https://wolfram.com/xid/0e2z90anme68dm9zz2hm-sr9tmw

Wolfram Research (2010), BernoulliGraphDistribution, Wolfram言語関数, https://reference.wolfram.com/language/ref/BernoulliGraphDistribution.html.
テキスト
Wolfram Research (2010), BernoulliGraphDistribution, Wolfram言語関数, https://reference.wolfram.com/language/ref/BernoulliGraphDistribution.html.
Wolfram Research (2010), BernoulliGraphDistribution, Wolfram言語関数, https://reference.wolfram.com/language/ref/BernoulliGraphDistribution.html.
CMS
Wolfram Language. 2010. "BernoulliGraphDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BernoulliGraphDistribution.html.
Wolfram Language. 2010. "BernoulliGraphDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BernoulliGraphDistribution.html.
APA
Wolfram Language. (2010). BernoulliGraphDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BernoulliGraphDistribution.html
Wolfram Language. (2010). BernoulliGraphDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BernoulliGraphDistribution.html
BibTeX
@misc{reference.wolfram_2025_bernoulligraphdistribution, author="Wolfram Research", title="{BernoulliGraphDistribution}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/BernoulliGraphDistribution.html}", note=[Accessed: 06-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_bernoulligraphdistribution, organization={Wolfram Research}, title={BernoulliGraphDistribution}, year={2010}, url={https://reference.wolfram.com/language/ref/BernoulliGraphDistribution.html}, note=[Accessed: 06-April-2025
]}