BrayCurtisDistance

BrayCurtisDistance[u,v]

给出向量 uv 之间的 BrayCurtis 距离.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (2)

两个向量之间的 BrayCurtis 距离:

数值向量之间的 BrayCurtis 距离:

范围  (2)

计算任何等长度向量之间的距离:

计算任何精度的向量之间的距离:

应用  (1)

利用 BrayCurtis 距离的群集数据:

属性和关系  (3)

BrayCurtis 距离是差与和的绝对值之和的比率:

BrayCurtis 距离等值于范数的比率:

BrayCurtis 距离是 Manhattan 距离的比率:

Wolfram Research (2007),BrayCurtisDistance,Wolfram 语言函数,https://reference.wolfram.com/language/ref/BrayCurtisDistance.html.

文本

Wolfram Research (2007),BrayCurtisDistance,Wolfram 语言函数,https://reference.wolfram.com/language/ref/BrayCurtisDistance.html.

CMS

Wolfram 语言. 2007. "BrayCurtisDistance." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/BrayCurtisDistance.html.

APA

Wolfram 语言. (2007). BrayCurtisDistance. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/BrayCurtisDistance.html 年

BibTeX

@misc{reference.wolfram_2024_braycurtisdistance, author="Wolfram Research", title="{BrayCurtisDistance}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/BrayCurtisDistance.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_braycurtisdistance, organization={Wolfram Research}, title={BrayCurtisDistance}, year={2007}, url={https://reference.wolfram.com/language/ref/BrayCurtisDistance.html}, note=[Accessed: 21-November-2024 ]}