CombinatorK

CombinatorK

represents the TemplateBox[{}, CombinatorK] combinator.

Details

Examples

open allclose all

Basic Examples  (2)

Apply the standard reduction rules of combinatory logic:

Use the axioms of combinatory logic to prove the TemplateBox[{}, CombinatorK] identity:

Applications  (1)

Prove an identity among combinators:

Properties & Relations  (1)

The TemplateBox[{}, CombinatorK] combinator is equivalent to the term :

Wolfram Research (2020), CombinatorK, Wolfram Language function, https://reference.wolfram.com/language/ref/CombinatorK.html.

Text

Wolfram Research (2020), CombinatorK, Wolfram Language function, https://reference.wolfram.com/language/ref/CombinatorK.html.

BibTeX

@misc{reference.wolfram_2020_combinatork, author="Wolfram Research", title="{CombinatorK}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/CombinatorK.html}", note=[Accessed: 16-January-2021 ]}

BibLaTeX

@online{reference.wolfram_2020_combinatork, organization={Wolfram Research}, title={CombinatorK}, year={2020}, url={https://reference.wolfram.com/language/ref/CombinatorK.html}, note=[Accessed: 16-January-2021 ]}

CMS

Wolfram Language. 2020. "CombinatorK." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CombinatorK.html.

APA

Wolfram Language. (2020). CombinatorK. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CombinatorK.html