Cubics

Cubics

代数方程式を解くことを含む関数のオプションで,三次方程式の解に陽的な形を与えるべきかどうかを指定する.

詳細

  • Cubics->Trueのとき,三次方程式の根は,根号の形で陽的に与えられる.Cubics->Falseのときは,際立って簡単な形を持たない三次方程式の根はRootオブジェクトを使って陰的に与えられる.
  • Cubics->Trueとすると,かなり大きい出力となることがある.

例題

すべて開くすべて閉じる

  (1)

デフォルトで,Reduceは三次方程式を解くのに根号の形で解く一般的な公式は使わない:

Cubics->Trueとすると,Reduceはすべての三次方程式を根号の形で解く:

次の簡単な三次方程式を根号で解くのには一般的な公式は必要ない:

スコープ  (2)

デフォルトで,Eigenvaluesは三次方程式を解くのに根号の形で解く一般的な公式は使わない:

Cubics->Trueとすると,すべての三次方程式が根号の形で解かれる:

デフォルトで,ToRadicalsはすべての三次Rootオブジェクトを根号に変換する:

Cubics->Falseとすると,ToRadicalsは三次方程式を解くのに一般的な公式を使わない:

Wolfram Research (1988), Cubics, Wolfram言語関数, https://reference.wolfram.com/language/ref/Cubics.html.

テキスト

Wolfram Research (1988), Cubics, Wolfram言語関数, https://reference.wolfram.com/language/ref/Cubics.html.

CMS

Wolfram Language. 1988. "Cubics." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Cubics.html.

APA

Wolfram Language. (1988). Cubics. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Cubics.html

BibTeX

@misc{reference.wolfram_2024_cubics, author="Wolfram Research", title="{Cubics}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/Cubics.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_cubics, organization={Wolfram Research}, title={Cubics}, year={1988}, url={https://reference.wolfram.com/language/ref/Cubics.html}, note=[Accessed: 21-November-2024 ]}