EquirippleFilterKernel
✖
EquirippleFilterKernel
EquirippleFilterKernel[{{{ωL1,ωR1},{ωL2,ωR2},…},{a1,a2,…}},n]
创建具有等波纹幅值响应的长度为 n 的有限脉冲响应(FIR)滤波器,给出具有指定左和右带边频率 {ωLi,ωRi} 和幅值 ai.
EquirippleFilterKernel[{{{ωL1,ωR1},{ωL2,ωR2},…},{a1,a2,…},{w1,…}},n]
对每个频带使用相对权值 wi.
EquirippleFilterKernel[{"type",{{{ωL1,ωR1},…},…}},n]
创建一个具有指定 "type" 的滤波器.
更多信息和选项

- EquirippleFilterKernel 返回 FIR 滤波器的脉冲响应系数的长度为 n 的数值列表,该滤波器具有最小车比雪夫(minimax)误差.
- 可能的滤波器指定类型是:
-
"Multiband" 多个传输频带和抑止频带指定(默认) "Differentiator" 微分滤波器 "Hilbert" Hilbert 滤波器 - 频率应该以升序给出,满足 0≤ωL1<ωR1<ωL2<ωR2<…<ωRk≤π.
- 频带、幅值和权值列表的长度应该相同.
- 幅值应该是非负的. 通常,数值 ai=0 指定一个抑止频带,而数值 ai=1 指定一个传输频带.
- 由 EquirippleFilterKernel 返回的核 ker 可以用于 ListConvolve[ker,data] 中,以将滤波器应用于data.
- 可以给出下列选项:
-
"GridDensity" 8 频率域采样密度因子 WorkingPrecision MachinePrecision 内部计算所使用的精度
范例
打开所有单元关闭所有单元基本范例 (1)常见实例总结
范围 (6)标准用法实例范围调查

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-yq1mxb


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-i6jn7q


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-cnp6x9


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-fx8b4i


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-bb0rdq


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-enha8p


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-frzi0l


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-vlpeze


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-bj82uu


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-ljin3l


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-ucklnk

选项 (1)各选项的常用值和功能
应用 (4)用该函数可以解决的问题范例

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-58fz3s

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-4a49ly

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-zjwj7q


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-p0yga


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-dpq7pn


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-kgklqi


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-du0kke


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-jriz7

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-jyp11n

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-b2sc6c


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-rq131u

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-l406iz

属性和关系 (2)函数的属性及与其他函数的关联
比较滤波器的等波纹(蓝色)和最小方差(红色)实现的抑止频带的频率响应行为:

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-i2p93a

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-bk3r0e

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-k3yb

在长度为 的半带滤波器中,位置
(
为正整数)处的系数具有零值:

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-5w408o


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-5cwuhx


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-q7dnfl


https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-ga1g28

可能存在的问题 (4)常见隐患和异常行为

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-cdvais



https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-sls4tz



https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-q5672v



https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-98kxl

https://wolfram.com/xid/0foiv1cjyqa9dfjrwj2-hjmktt

Wolfram Research (2012),EquirippleFilterKernel,Wolfram 语言函数,https://reference.wolfram.com/language/ref/EquirippleFilterKernel.html.
文本
Wolfram Research (2012),EquirippleFilterKernel,Wolfram 语言函数,https://reference.wolfram.com/language/ref/EquirippleFilterKernel.html.
Wolfram Research (2012),EquirippleFilterKernel,Wolfram 语言函数,https://reference.wolfram.com/language/ref/EquirippleFilterKernel.html.
CMS
Wolfram 语言. 2012. "EquirippleFilterKernel." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/EquirippleFilterKernel.html.
Wolfram 语言. 2012. "EquirippleFilterKernel." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/EquirippleFilterKernel.html.
APA
Wolfram 语言. (2012). EquirippleFilterKernel. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/EquirippleFilterKernel.html 年
Wolfram 语言. (2012). EquirippleFilterKernel. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/EquirippleFilterKernel.html 年
BibTeX
@misc{reference.wolfram_2025_equiripplefilterkernel, author="Wolfram Research", title="{EquirippleFilterKernel}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/EquirippleFilterKernel.html}", note=[Accessed: 02-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_equiripplefilterkernel, organization={Wolfram Research}, title={EquirippleFilterKernel}, year={2012}, url={https://reference.wolfram.com/language/ref/EquirippleFilterKernel.html}, note=[Accessed: 02-April-2025
]}