GroupElementQ

GroupElementQ[group,g]

returns True if the object g is an element of group and False otherwise.

Details

Examples

open allclose all

Basic Examples  (2)

Test membership of a permutation:

The identity is an element of any group:

Scope  (1)

This is a subgroup of order 240 of :

This permutation is not an element of the group:

This permutation does belong to the group:

Wolfram Research (2010), GroupElementQ, Wolfram Language function, https://reference.wolfram.com/language/ref/GroupElementQ.html.

Text

Wolfram Research (2010), GroupElementQ, Wolfram Language function, https://reference.wolfram.com/language/ref/GroupElementQ.html.

BibTeX

@misc{reference.wolfram_2021_groupelementq, author="Wolfram Research", title="{GroupElementQ}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/GroupElementQ.html}", note=[Accessed: 05-December-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_groupelementq, organization={Wolfram Research}, title={GroupElementQ}, year={2010}, url={https://reference.wolfram.com/language/ref/GroupElementQ.html}, note=[Accessed: 05-December-2021 ]}

CMS

Wolfram Language. 2010. "GroupElementQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/GroupElementQ.html.

APA

Wolfram Language. (2010). GroupElementQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GroupElementQ.html