PadeApproximant[expr,{x,x0,{m,n}}]
gives the Padé approximant to expr about the point x=x0, with numerator order m and denominator order n.
PadeApproximant[expr,{x,x0,n}]
gives the diagonal Padé approximant to expr about the point x=x0 of order n.


PadeApproximant
PadeApproximant[expr,{x,x0,{m,n}}]
gives the Padé approximant to expr about the point x=x0, with numerator order m and denominator order n.
PadeApproximant[expr,{x,x0,n}]
gives the diagonal Padé approximant to expr about the point x=x0 of order n.
Details

- The Wolfram Language can find the Padé approximant about the point x=x0 only when it can evaluate power series at that point.
- PadeApproximant produces a ratio of ordinary polynomial expressions, not a special SeriesData object.
Examples
open all close allBasic Examples (2)
Scope (4)
Generalizations & Extensions (3)
Applications (2)
Properties & Relations (2)
The Padé approximant agrees with the ordinary series for terms:
For PadeApproximant gives an ordinary series:
Tech Notes
Related Guides
History
Text
Wolfram Research (2007), PadeApproximant, Wolfram Language function, https://reference.wolfram.com/language/ref/PadeApproximant.html.
CMS
Wolfram Language. 2007. "PadeApproximant." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PadeApproximant.html.
APA
Wolfram Language. (2007). PadeApproximant. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PadeApproximant.html
BibTeX
@misc{reference.wolfram_2025_padeapproximant, author="Wolfram Research", title="{PadeApproximant}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/PadeApproximant.html}", note=[Accessed: 12-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_padeapproximant, organization={Wolfram Research}, title={PadeApproximant}, year={2007}, url={https://reference.wolfram.com/language/ref/PadeApproximant.html}, note=[Accessed: 12-August-2025]}