PermutationCyclesQ

PermutationCyclesQ[expr]

returns True if expr is a permutation in disjoint cyclic form, and False otherwise.

Details

  • The disjoint cyclic form of a permutation is an expression with head Cycles containing a list of cycles, each one being a list of positive integers. The integer points in a permutation must all be different.

Examples

open allclose all

Basic Examples  (3)

A valid permutation in cyclic form:

A symbolic permutation object:

An invalid permutation:

Scope  (2)

Test permutations of any support:

The identity permutation:

Properties & Relations  (1)

A possible Wolfram Language implementation of PermutationCyclesQ:

Wolfram Research (2010), PermutationCyclesQ, Wolfram Language function, https://reference.wolfram.com/language/ref/PermutationCyclesQ.html.

Text

Wolfram Research (2010), PermutationCyclesQ, Wolfram Language function, https://reference.wolfram.com/language/ref/PermutationCyclesQ.html.

BibTeX

@misc{reference.wolfram_2021_permutationcyclesq, author="Wolfram Research", title="{PermutationCyclesQ}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/PermutationCyclesQ.html}", note=[Accessed: 03-August-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_permutationcyclesq, organization={Wolfram Research}, title={PermutationCyclesQ}, year={2010}, url={https://reference.wolfram.com/language/ref/PermutationCyclesQ.html}, note=[Accessed: 03-August-2021 ]}

CMS

Wolfram Language. 2010. "PermutationCyclesQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PermutationCyclesQ.html.

APA

Wolfram Language. (2010). PermutationCyclesQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PermutationCyclesQ.html