returns True if expr is a valid permutation list and False otherwise.


  • A valid permutation list {p1,,pn} is a rearrangement of the integers {1,,n}.


open allclose all

Basic Examples  (1)

A valid permutation list:

Invalid permutation lists:

Scope  (2)

PermutationListQ works efficiently with large permutation lists:

The empty list is considered a permutation list of length and degree 0:

Properties & Relations  (4)

RandomSample[Range[n]] always gives a valid permutation list:

A possible, but less efficient, Wolfram Language implementation:

Validity of permutations in cyclic form is checked with PermutationCyclesQ. A permutation list can always be obtained as a permutation of the elements in canonical order using Permute:

Ordering always returns a permutation list, even if the elements of the expression are repeated:

Neat Examples  (1)

There are 409113 integer numbers up to whose decimal digits form permutation lists. This is how the first 153 (the largest being 54321) are distributed:

Wolfram Research (2010), PermutationListQ, Wolfram Language function,


Wolfram Research (2010), PermutationListQ, Wolfram Language function,


Wolfram Language. 2010. "PermutationListQ." Wolfram Language & System Documentation Center. Wolfram Research.


Wolfram Language. (2010). PermutationListQ. Wolfram Language & System Documentation Center. Retrieved from


@misc{reference.wolfram_2024_permutationlistq, author="Wolfram Research", title="{PermutationListQ}", year="2010", howpublished="\url{}", note=[Accessed: 17-June-2024 ]}


@online{reference.wolfram_2024_permutationlistq, organization={Wolfram Research}, title={PermutationListQ}, year={2010}, url={}, note=[Accessed: 17-June-2024 ]}