represents the domain of strictly positive integers, as in x∈PositiveIntegers.


PositiveIntegers
represents the domain of strictly positive integers, as in x∈PositiveIntegers.
Details

- x∈PositiveIntegers evaluates immediately if x is a numeric quantity.
- Simplify[expr∈PositiveIntegers,assum] can be used to try to determine whether an expression is a positive integer under the given assumptions.
- (x1|x2|…)∈PositiveIntegers and {x1,x2,…}∈PositiveIntegers test whether all xi are positive integers.
- PositiveIntegers is output in StandardForm or TraditionalForm as
. This typeset form can be input using
pints
.
Examples
open all close allBasic Examples (3)
Scope (6)
Test domain membership of a numeric expression:
Make domain membership assumptions:
Specify the default domain over which a function should work:
Solve an optimization problem over the positive integers:
Test whether several numbers are positive integers:
If any number is explicitly not a positive integer, the result is False:
TraditionalForm formatting:
Applications (1)
Properties & Relations (3)
Membership in PositiveIntegers is equivalent to membership in Integers along with positivity:
PositiveIntegers is contained in PositiveReals and PositiveRationals:
PositiveIntegers is disjoint from NonPositiveIntegers and NegativeIntegers:
Related Guides
History
Text
Wolfram Research (2019), PositiveIntegers, Wolfram Language function, https://reference.wolfram.com/language/ref/PositiveIntegers.html.
CMS
Wolfram Language. 2019. "PositiveIntegers." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PositiveIntegers.html.
APA
Wolfram Language. (2019). PositiveIntegers. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PositiveIntegers.html
BibTeX
@misc{reference.wolfram_2025_positiveintegers, author="Wolfram Research", title="{PositiveIntegers}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/PositiveIntegers.html}", note=[Accessed: 16-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_positiveintegers, organization={Wolfram Research}, title={PositiveIntegers}, year={2019}, url={https://reference.wolfram.com/language/ref/PositiveIntegers.html}, note=[Accessed: 16-August-2025]}