RiemannXi
RiemannXi[s]
gives the Riemann xi function .
Details
- Mathematical function, suitable for symbolic and numeric manipulations.
- .
- For certain special arguments, RiemannXi automatically evaluates to exact values.
- RiemannXi is an entire function with no branch cut discontinuities.
- RiemannXi can be evaluated to arbitrary numerical precision.
- RiemannXi automatically threads over lists.
- RiemannXi can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (6)
Plot over a subset of the reals:
Plot over a subset of the complexes:
Series expansion at the origin:
Series expansion at Infinity:
Scope (25)
Numerical Evaluation (6)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:
Or compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix RiemannXi function using MatrixFunction:
Specific Values (4)
Simple exact values are generated automatically:
Find the minimum of RiemannXi[x]:
Visualization (2)
Function Properties (6)
Differentiation (3)
Text
Wolfram Research (2014), RiemannXi, Wolfram Language function, https://reference.wolfram.com/language/ref/RiemannXi.html (updated 2022).
CMS
Wolfram Language. 2014. "RiemannXi." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/RiemannXi.html.
APA
Wolfram Language. (2014). RiemannXi. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RiemannXi.html