ScalingMatrix
ScalingMatrix[{sx,sy,…}]
gives the matrix corresponding to scaling by a factor si along each coordinate axis.
ScalingMatrix[s,v]
gives the matrix corresponding to scaling by a factor s along the direction of the vector v.
Details
- ScalingMatrix gives matrices for scaling from the origin.
- ScalingMatrix works in any number of dimensions.
Examples
open allclose allBasic Examples (2)
Scope (3)
Applications (4)
Properties & Relations (5)
The determinant of ScalingMatrix[s,v] is s:
The inverse of ScalingMatrix[s,v] is given by ScalingMatrix[1/s,v]:
The determinant of ScalingMatrix[{s1,…,sn}] is given by s1⋯ sn:
The inverse of ScalingMatrix[{s1,…,sn}] is given by ScalingMatrix[{1/s1,…,1/sn}]:
The form ScalingMatrix[{s1,…,sn}] is equivalent to DiagonalMatrix[{s1,…,sn}]:
Text
Wolfram Research (2007), ScalingMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/ScalingMatrix.html.
CMS
Wolfram Language. 2007. "ScalingMatrix." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ScalingMatrix.html.
APA
Wolfram Language. (2007). ScalingMatrix. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ScalingMatrix.html