# SpheroidalRadialFactor

SpheroidalRadialFactor[n,m,c]

gives the spheroidal radial factor with degree and order .

# Examples

open allclose all

## Basic Examples(2)

Evaluate numerically:

Plot over a subset of the reals:

## Scope(11)

### Numerical Evaluation(4)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

### Specific Values(2)

Value at zero:

Find the first positive maximum of SpheroidalRadialFactor[3,2,x]:

### Visualization(2)

Plot the SpheroidalRadialFactor function:

Plot the real part of SpheroidalRadialFactor[2,1,x+ y]:

Plot the imaginary part of SpheroidalRadialFactor[2,1,x+ y]:

### Function Properties(3)

has no singularities or discontinuities:

is neither nondecreasing nor nonincreasing:

is neither convex nor concave:

## Applications(1)

Build a near-spherical approximation to :

First few terms of the approximation:

Compare numerically:

Wolfram Research (2007), SpheroidalRadialFactor, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalRadialFactor.html.

#### Text

Wolfram Research (2007), SpheroidalRadialFactor, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalRadialFactor.html.

#### CMS

Wolfram Language. 2007. "SpheroidalRadialFactor." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalRadialFactor.html.

#### APA

Wolfram Language. (2007). SpheroidalRadialFactor. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalRadialFactor.html

#### BibTeX

@misc{reference.wolfram_2023_spheroidalradialfactor, author="Wolfram Research", title="{SpheroidalRadialFactor}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalRadialFactor.html}", note=[Accessed: 26-February-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2023_spheroidalradialfactor, organization={Wolfram Research}, title={SpheroidalRadialFactor}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalRadialFactor.html}, note=[Accessed: 26-February-2024 ]}