SpheroidalS1
✖
SpheroidalS1
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- The radial spheroidal functions satisfy the differential equation
with the spheroidal eigenvalue
given by SpheroidalEigenvalue[n,m,γ].
- The
are normalized according to the Meixner–Schäfke scheme.
- SpheroidalS1 can be evaluated to arbitrary numerical precision.
- SpheroidalS1 automatically threads over lists. »
Examples
open allclose allBasic Examples (5)Summary of the most common use cases

https://wolfram.com/xid/0enwjuj7d-g6a2f7

Plot over a subset of the reals:

https://wolfram.com/xid/0enwjuj7d-io64fy

Plot over a subset of the complexes:

https://wolfram.com/xid/0enwjuj7d-kiedlx

Series expansion at the origin:

https://wolfram.com/xid/0enwjuj7d-fwvmoh

Series expansion at a singular point:

https://wolfram.com/xid/0enwjuj7d-20imb

Scope (21)Survey of the scope of standard use cases
Numerical Evaluation (5)

https://wolfram.com/xid/0enwjuj7d-l274ju


https://wolfram.com/xid/0enwjuj7d-cksbl4


https://wolfram.com/xid/0enwjuj7d-b0wt9


https://wolfram.com/xid/0enwjuj7d-zn1q5

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0enwjuj7d-y7k4a


https://wolfram.com/xid/0enwjuj7d-hj5hh1


https://wolfram.com/xid/0enwjuj7d-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0enwjuj7d-di5gcr


https://wolfram.com/xid/0enwjuj7d-bq2c6r

Compute the elementwise values of an array using automatic threading:

https://wolfram.com/xid/0enwjuj7d-thgd2

Or compute the matrix SpheroidalS1 function using MatrixFunction:

https://wolfram.com/xid/0enwjuj7d-o5jpo

Specific Values (4)
Simple exact values are generated automatically:

https://wolfram.com/xid/0enwjuj7d-fc9m8o

Find the first positive maximum of SpheroidalS1[2,0,5,x]:

https://wolfram.com/xid/0enwjuj7d-f2hrld


https://wolfram.com/xid/0enwjuj7d-h3ihr5

SpheroidalS1 functions become elementary if m=1 and γ=n π/2 :

https://wolfram.com/xid/0enwjuj7d-chhice

TraditionalForm typesetting:

https://wolfram.com/xid/0enwjuj7d-el2iv0

Visualization (3)
Plot the SpheroidalS1 function for integer orders:

https://wolfram.com/xid/0enwjuj7d-ecj8m7

Plot the SpheroidalS1 function for noninteger parameters:

https://wolfram.com/xid/0enwjuj7d-8jp9f


https://wolfram.com/xid/0enwjuj7d-dbvuei


https://wolfram.com/xid/0enwjuj7d-kbvpn

Function Properties (5)
SpheroidalS1 is not an analytic function:

https://wolfram.com/xid/0enwjuj7d-h5x4l2

has both singularities and discontinuities for
:

https://wolfram.com/xid/0enwjuj7d-mdtl3h


https://wolfram.com/xid/0enwjuj7d-mn5jws

is neither non-decreasing nor non-increasing:

https://wolfram.com/xid/0enwjuj7d-nlz7s


https://wolfram.com/xid/0enwjuj7d-poz8g


https://wolfram.com/xid/0enwjuj7d-ctca0g

SpheroidalS1 is neither non-negative nor non-positive:

https://wolfram.com/xid/0enwjuj7d-84dui

SpheroidalS1 is neither convex nor concave:

https://wolfram.com/xid/0enwjuj7d-8kku21

Differentiation (2)
First derivative with respect to z:

https://wolfram.com/xid/0enwjuj7d-krpoah

Higher derivatives with respect to z:

https://wolfram.com/xid/0enwjuj7d-z33jv

Plot the higher derivatives with respect to z when n=10, m=2 and γ=1/3:

https://wolfram.com/xid/0enwjuj7d-fxwmfc

Series Expansions (2)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0enwjuj7d-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/0enwjuj7d-binhar

Taylor expansion at a generic point:

https://wolfram.com/xid/0enwjuj7d-jwxla7

Applications (4)Sample problems that can be solved with this function
Spheroidal angular harmonics are eigenfunctions of the Sinc transform on the interval :

https://wolfram.com/xid/0enwjuj7d-dbsamh


https://wolfram.com/xid/0enwjuj7d-fvwqwj

Find resonant frequencies for the Dirichlet problem in the prolate spheroidal cavity:

https://wolfram.com/xid/0enwjuj7d-cpivcf

Determine the first few frequencies:

https://wolfram.com/xid/0enwjuj7d-blbz2q


https://wolfram.com/xid/0enwjuj7d-b8ff34

Plot the prolate and oblate functions:

https://wolfram.com/xid/0enwjuj7d-jcujiz


https://wolfram.com/xid/0enwjuj7d-edag2r

Build a near-spherical approximation to :

https://wolfram.com/xid/0enwjuj7d-gzcleh
First few terms of the approximation:

https://wolfram.com/xid/0enwjuj7d-b4ghrk


https://wolfram.com/xid/0enwjuj7d-cjl5gk

Wolfram Research (2007), SpheroidalS1, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalS1.html.
Text
Wolfram Research (2007), SpheroidalS1, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalS1.html.
Wolfram Research (2007), SpheroidalS1, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalS1.html.
CMS
Wolfram Language. 2007. "SpheroidalS1." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalS1.html.
Wolfram Language. 2007. "SpheroidalS1." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalS1.html.
APA
Wolfram Language. (2007). SpheroidalS1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalS1.html
Wolfram Language. (2007). SpheroidalS1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalS1.html
BibTeX
@misc{reference.wolfram_2025_spheroidals1, author="Wolfram Research", title="{SpheroidalS1}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalS1.html}", note=[Accessed: 16-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_spheroidals1, organization={Wolfram Research}, title={SpheroidalS1}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalS1.html}, note=[Accessed: 16-April-2025
]}