SpheroidalS1Prime
SpheroidalS1Prime[n,m,γ,z]
gives the derivative with respect to of the radial spheroidal function of the first kind.
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- For certain special arguments, SpheroidalS1Prime automatically evaluates to exact values.
- SpheroidalS1Prime can be evaluated to arbitrary numerical precision.
- SpheroidalS1Prime automatically threads over lists. »
Examples
open allclose allBasic Examples (5)
Scope (23)
Numerical Evaluation (5)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute the elementwise values of an array using automatic threading:
Or compute the matrix SpheroidalS1Prime function using MatrixFunction:
Specific Values (4)
Simple exact values are generated automatically:
Find the first positive maximum of SpheroidalS1Prime[2,0,5,x]:
SpheroidalS1Prime functions become elementary if m=1 and γ=n π/2 :
TraditionalForm typesetting:
Visualization (3)
Plot the SpheroidalS1Prime function for integer orders:
Plot the SpheroidalS1Prime function for noninteger parameters:
Function Properties (5)
SpheroidalS1Prime is not an analytic function:
has both singularities and discontinuities for :
is neither non-decreasing nor non-increasing:
SpheroidalS1Prime is neither non-negative nor non-positive:
SpheroidalS1Prime is neither convex nor concave:
Differentiation (2)
Integration (2)
Series Expansions (2)
Find the Taylor expansion using Series:
Applications (1)
Text
Wolfram Research (2007), SpheroidalS1Prime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalS1Prime.html.
CMS
Wolfram Language. 2007. "SpheroidalS1Prime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalS1Prime.html.
APA
Wolfram Language. (2007). SpheroidalS1Prime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalS1Prime.html