SpheroidalS1Prime
SpheroidalS1Prime[n,m,γ,z]
gives the derivative with respect to of the radial spheroidal function
of the first kind.
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- For certain special arguments, SpheroidalS1Prime automatically evaluates to exact values.
- SpheroidalS1Prime can be evaluated to arbitrary numerical precision.
- SpheroidalS1Prime automatically threads over lists.
Examples
open allclose allBasic Examples (5)
Scope (17)
Numerical Evaluation (4)
Specific Values (4)
Simple exact values are generated automatically:
Find the first positive maximum of SpheroidalS1Prime[2,0,5,x]:
SpheroidalS1Prime functions become elementary if m=1 and γ=n π/2 :
TraditionalForm typesetting:
Visualization (3)
Plot the SpheroidalS1Prime function for integer orders:
Plot the SpheroidalS1Prime function for noninteger parameters:
Differentiation (2)
Integration (2)
Series Expansions (2)
Find the Taylor expansion using Series:
Applications (1)
Text
Wolfram Research (2007), SpheroidalS1Prime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalS1Prime.html.
BibTeX
BibLaTeX
CMS
Wolfram Language. 2007. "SpheroidalS1Prime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalS1Prime.html.
APA
Wolfram Language. (2007). SpheroidalS1Prime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalS1Prime.html