SpheroidalS2Prime
✖
SpheroidalS2Prime
gives the derivative with respect to of the radial spheroidal function
of the second kind.
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- For certain special arguments, SpheroidalS2Prime automatically evaluates to exact values.
- SpheroidalS2Prime can be evaluated to arbitrary numerical precision.
- SpheroidalS2Prime automatically threads over lists. »
Examples
open allclose allBasic Examples (5)Summary of the most common use cases

https://wolfram.com/xid/0fq238t3na248-iw7myr

Plot over a subset of the reals:

https://wolfram.com/xid/0fq238t3na248-io64fy

Plot over a subset of the complexes:

https://wolfram.com/xid/0fq238t3na248-kiedlx

Series expansion at the origin:

https://wolfram.com/xid/0fq238t3na248-fwvmoh

Series expansion at a singular point:

https://wolfram.com/xid/0fq238t3na248-20imb

Scope (24)Survey of the scope of standard use cases
Numerical Evaluation (5)

https://wolfram.com/xid/0fq238t3na248-l274ju


https://wolfram.com/xid/0fq238t3na248-whe1w


https://wolfram.com/xid/0fq238t3na248-zn1q5

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0fq238t3na248-y7k4a


https://wolfram.com/xid/0fq238t3na248-hj5hh1


https://wolfram.com/xid/0fq238t3na248-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0fq238t3na248-di5gcr


https://wolfram.com/xid/0fq238t3na248-bq2c6r

Compute the elementwise values of an array using automatic threading:

https://wolfram.com/xid/0fq238t3na248-thgd2

Or compute the matrix SpheroidalS2Prime function using MatrixFunction:

https://wolfram.com/xid/0fq238t3na248-o5jpo

Specific Values (5)
Simple exact values are generated automatically:

https://wolfram.com/xid/0fq238t3na248-fc9m8o


https://wolfram.com/xid/0fq238t3na248-epvazh

Find the first positive maximum of SpheroidalS2Prime[2,0,5,x]:

https://wolfram.com/xid/0fq238t3na248-f2hrld


https://wolfram.com/xid/0fq238t3na248-u1fjh

SpheroidalS2Prime functions become elementary if and
:

https://wolfram.com/xid/0fq238t3na248-chhice

TraditionalForm typesetting:

https://wolfram.com/xid/0fq238t3na248-el2iv0

Visualization (3)
Plot the SpheroidalS2Prime function for integer orders:

https://wolfram.com/xid/0fq238t3na248-ecj8m7

Plot the SpheroidalS2Prime function for non-integer parameters:

https://wolfram.com/xid/0fq238t3na248-8jp9f

Plot the real part of SpheroidalS2Prime:

https://wolfram.com/xid/0fq238t3na248-dbvuei

Plot the imaginary part of SpheroidalS2Prime:

https://wolfram.com/xid/0fq238t3na248-bfq6yk

Function Properties (5)
SpheroidalS2Prime is not an analytic function:

https://wolfram.com/xid/0fq238t3na248-h5x4l2

has both singularities and discontinuities for
:

https://wolfram.com/xid/0fq238t3na248-mdtl3h


https://wolfram.com/xid/0fq238t3na248-mn5jws

is neither non-decreasing nor non-increasing:

https://wolfram.com/xid/0fq238t3na248-nlz7s


https://wolfram.com/xid/0fq238t3na248-poz8g


https://wolfram.com/xid/0fq238t3na248-ctca0g

SpheroidalS2Prime is neither non-negative nor non-positive:

https://wolfram.com/xid/0fq238t3na248-84dui

SpheroidalS2Prime is neither convex nor concave:

https://wolfram.com/xid/0fq238t3na248-8kku21

Differentiation (2)
First derivative with respect to :

https://wolfram.com/xid/0fq238t3na248-krpoah

Higher derivatives with respect to :

https://wolfram.com/xid/0fq238t3na248-z33jv

Plot the higher derivatives with respect to when
,
and
:

https://wolfram.com/xid/0fq238t3na248-fxwmfc

Integration (2)
Compute the indefinite integral using Integrate:

https://wolfram.com/xid/0fq238t3na248-bponid


https://wolfram.com/xid/0fq238t3na248-op9yly


https://wolfram.com/xid/0fq238t3na248-bfdh5d

Series Expansions (2)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0fq238t3na248-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/0fq238t3na248-binhar

Taylor expansion at a generic point:

https://wolfram.com/xid/0fq238t3na248-jwxla7

Wolfram Research (2007), SpheroidalS2Prime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html.
Text
Wolfram Research (2007), SpheroidalS2Prime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html.
Wolfram Research (2007), SpheroidalS2Prime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html.
CMS
Wolfram Language. 2007. "SpheroidalS2Prime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html.
Wolfram Language. 2007. "SpheroidalS2Prime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html.
APA
Wolfram Language. (2007). SpheroidalS2Prime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html
Wolfram Language. (2007). SpheroidalS2Prime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html
BibTeX
@misc{reference.wolfram_2025_spheroidals2prime, author="Wolfram Research", title="{SpheroidalS2Prime}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html}", note=[Accessed: 26-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_spheroidals2prime, organization={Wolfram Research}, title={SpheroidalS2Prime}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html}, note=[Accessed: 26-April-2025
]}