SpheroidalS2
SpheroidalS2[n,m,γ,z]
gives the radial spheroidal function of the second kind.
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- The radial spheroidal functions satisfy the differential equation
with the spheroidal eigenvalue
given by SpheroidalEigenvalue[n,m,γ].
- The
are normalized according to the Meixner–Schäfke scheme.
- SpheroidalS2 can be evaluated to arbitrary numerical precision.
- SpheroidalS2 automatically threads over lists.
Examples
open allclose allBasic Examples (5)
Scope (16)
Numerical Evaluation (4)
Specific Values (5)
Simple exact values are generated automatically:
Find the first positive maximum of SpheroidalS2[2,0,5,x]:
SpheroidalS2 functions become elementary if and
:
TraditionalForm typesetting:
Visualization (3)
Plot the SpheroidalS2 function for integer orders:
Plot the SpheroidalS2 function for non-integer parameters:
Differentiation (2)
Series Expansions (2)
Find the Taylor expansion using Series:
Text
Wolfram Research (2007), SpheroidalS2, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalS2.html.
BibTeX
BibLaTeX
CMS
Wolfram Language. 2007. "SpheroidalS2." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalS2.html.
APA
Wolfram Language. (2007). SpheroidalS2. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalS2.html