SphericalBesselY

SphericalBesselY[n,z]

gives the spherical Bessel function of the second kind TemplateBox[{n, z}, SphericalBesselY].

Details

Examples

open allclose all

Basic Examples  (5)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity:

Scope  (39)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around:

Compute the elementwise values of an array:

Or compute the matrix SphericalBesselY function using MatrixFunction:

Specific Values  (4)

Limiting value at infinity:

SphericalBesselY for symbolic n:

Find the first positive zero of SphericalBesselY:

Different SphericalBesselY types give different symbolic forms:

Visualization  (3)

Plot the SphericalBesselY function for integer () and half-integer () orders:

Plot the real part of :

Plot the imaginary part of :

Plot the real part of :

Plot the imaginary part of :

Function Properties  (12)

Real domain of TemplateBox[{0, x}, SphericalBesselY]:

Complex domain of TemplateBox[{0, x}, SphericalBesselY]:

TemplateBox[{{-, {1, /, 2}}, x}, SphericalBesselY] is defined for all real values greater than 0:

Complex domain is the whole plane except :

Approximate function range of TemplateBox[{0, x}, SphericalBesselY]:

Approximate function range of TemplateBox[{1, x}, SphericalBesselY]:

For integer , TemplateBox[{n, z}, SphericalBesselJ] is an even or odd function in with the opposite parity of :

This can be expressed as TemplateBox[{n, z}, SphericalBesselY]=(-1)^(n+1) TemplateBox[{n, {-, z}}, SphericalBesselY]:

SphericalBesselY threads elementwise over lists:

SphericalBesselY is not an analytic function:

SphericalBesselY is neither non-decreasing nor non-increasing for non-integer n:

SphericalBesselY is not injective:

SphericalBesselY is neither non-negative nor non-positive:

TemplateBox[{n, z}, SphericalBesselY] is singular for , possibly including , when is noninteger:

SphericalBesselY is neither convex nor concave:

TraditionalForm formatting:

Differentiation  (3)

First derivative with respect to z:

Higher derivatives with respect to z

Plot the higher derivatives with respect to z:

Formula for the ^(th) derivative with respect to z:

Integration  (3)

Compute the indefinite integral using Integrate:

Definite integral:

More integrals:

Series Expansions  (6)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

General term in the series expansion using SeriesCoefficient:

FourierSeries:

Find the series expansion at Infinity:

Find series expansion for an arbitrary symbolic direction :

Taylor expansion at a generic point:

Function Identities and Simplifications  (2)

Use FullSimplify to simplify spherical Bessel functions of the second kind:

Recurrence relations:

Applications  (1)

Solve the radial part of the three-dimensional Laplace operator:

Properties & Relations  (1)

Integrate expressions involving spherical Bessel functions:

Wolfram Research (2007), SphericalBesselY, Wolfram Language function, https://reference.wolfram.com/language/ref/SphericalBesselY.html.

Text

Wolfram Research (2007), SphericalBesselY, Wolfram Language function, https://reference.wolfram.com/language/ref/SphericalBesselY.html.

CMS

Wolfram Language. 2007. "SphericalBesselY." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SphericalBesselY.html.

APA

Wolfram Language. (2007). SphericalBesselY. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SphericalBesselY.html

BibTeX

@misc{reference.wolfram_2024_sphericalbessely, author="Wolfram Research", title="{SphericalBesselY}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SphericalBesselY.html}", note=[Accessed: 20-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_sphericalbessely, organization={Wolfram Research}, title={SphericalBesselY}, year={2007}, url={https://reference.wolfram.com/language/ref/SphericalBesselY.html}, note=[Accessed: 20-January-2025 ]}