SphericalHankelH1
✖
SphericalHankelH1
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- SphericalHankelH1 is given in terms of ordinary Hankel functions by
.
- SphericalHankelH1[n,z] has a branch cut discontinuity in the complex z plane running from
to
.
- Explicit symbolic forms for integer n can be obtained using FunctionExpand.
- For certain special arguments, SphericalHankelH1 automatically evaluates to exact values.
- SphericalHankelH1 can be evaluated to arbitrary numerical precision.
- SphericalHankelH1 automatically threads over lists.
- SphericalHankelH1 can be used with CenteredInterval objects. »
Examples
open allclose allBasic Examples (6)Summary of the most common use cases

Plot the real and imaginary parts of the function:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity:

Series expansion at a singular point:

Scope (32)Survey of the scope of standard use cases
Numerical Evaluation (6)



The precision of the output tracks the precision of the input:


Evaluate efficiently at high precision:


SphericalHankelH1 can be used with CenteredInterval objects:

Compute the elementwise values of an array:

Or compute the matrix SphericalHankelH1 function using MatrixFunction:

Specific Values (4)

SphericalHankelH1 for symbolic n:

Find the first positive zero of imaginary part of SphericalHankelH1:


Different SphericalHankelH1 types give different symbolic forms:

Visualization (3)
Plot the absolute values of SphericalHankelH1 function for various orders:





Function Properties (7)
Complex domain for is the whole plane except
:

It is not defined as a function from to
:

SphericalHankelH1 is a complex linear combination of SphericalBesselJ and SphericalBesselY:

SphericalHankelH1 threads elementwise over lists:


SphericalHankelH1 is not injective over complexes:

Use FindInstance to find inputs that demonstrate it is not injective:

has both singularities and discontinuities along the non-positive real axis:


TraditionalForm formatting:

Differentiation (3)
Integration (3)
Series Expansions (4)
Find the Taylor expansion using Series:

General term in the series expansion using SeriesCoefficient:

Find the series expansion at Infinity:

Taylor expansion at a generic point:

Function Identities and Simplifications (2)
Properties & Relations (1)Properties of the function, and connections to other functions

Wolfram Research (2007), SphericalHankelH1, Wolfram Language function, https://reference.wolfram.com/language/ref/SphericalHankelH1.html.
Text
Wolfram Research (2007), SphericalHankelH1, Wolfram Language function, https://reference.wolfram.com/language/ref/SphericalHankelH1.html.
Wolfram Research (2007), SphericalHankelH1, Wolfram Language function, https://reference.wolfram.com/language/ref/SphericalHankelH1.html.
CMS
Wolfram Language. 2007. "SphericalHankelH1." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SphericalHankelH1.html.
Wolfram Language. 2007. "SphericalHankelH1." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SphericalHankelH1.html.
APA
Wolfram Language. (2007). SphericalHankelH1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SphericalHankelH1.html
Wolfram Language. (2007). SphericalHankelH1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SphericalHankelH1.html
BibTeX
@misc{reference.wolfram_2025_sphericalhankelh1, author="Wolfram Research", title="{SphericalHankelH1}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SphericalHankelH1.html}", note=[Accessed: 25-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_sphericalhankelh1, organization={Wolfram Research}, title={SphericalHankelH1}, year={2007}, url={https://reference.wolfram.com/language/ref/SphericalHankelH1.html}, note=[Accessed: 25-April-2025
]}