WOLFRAM

gives the spherical Hankel function of the first kind TemplateBox[{n, z}, SphericalHankelH1].

Details

Examples

open allclose all

Basic Examples  (6)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Plot the real and imaginary parts of the function:

Out[1]=1

Plot over a subset of the complexes:

Out[1]=1

Series expansion at the origin:

Out[1]=1

Series expansion at Infinity:

Out[1]=1

Series expansion at a singular point:

Out[1]=1

Scope  (32)Survey of the scope of standard use cases

Numerical Evaluation  (6)

Evaluate numerically:

Out[1]=1
Out[2]=2

Evaluate to high precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[2]=2

Complex number inputs:

Out[1]=1

Evaluate efficiently at high precision:

Out[1]=1
Out[2]=2

SphericalHankelH1 can be used with CenteredInterval objects:

Out[1]=1

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix SphericalHankelH1 function using MatrixFunction:

Out[2]=2

Specific Values  (4)

Limiting value at infinity:

Out[1]=1

SphericalHankelH1 for symbolic n:

Out[1]=1

Find the first positive zero of imaginary part of SphericalHankelH1:

Out[1]=1
Out[2]=2

Different SphericalHankelH1 types give different symbolic forms:

Out[1]=1

Visualization  (3)

Plot the absolute values of SphericalHankelH1 function for various orders:

Out[1]=1

Plot the real part of :

Out[1]=1

Plot the imaginary part of :

Out[2]=2

Plot the real part of :

Out[1]=1

Plot the imaginary part of :

Out[2]=2

Function Properties  (7)

Complex domain for TemplateBox[{n, z}, SphericalHankelH1] is the whole plane except :

Out[3]=3

It is not defined as a function from TemplateBox[{}, Reals] to TemplateBox[{}, Reals]:

Out[4]=4

SphericalHankelH1 is a complex linear combination of SphericalBesselJ and SphericalBesselY:

Out[1]=1

SphericalHankelH1 threads elementwise over lists:

Out[1]=1

TemplateBox[{n, x}, SphericalHankelH1] is not an analytic function:

Out[1]=1

SphericalHankelH1 is not injective over complexes:

Out[1]=1

Use FindInstance to find inputs that demonstrate it is not injective:

Out[2]=2

TemplateBox[{n, z}, SphericalHankelH1] has both singularities and discontinuities along the non-positive real axis:

Out[1]=1
Out[2]=2

TraditionalForm formatting:

Differentiation  (3)

First derivative with respect to :

Out[1]=1

Higher derivatives with respect to :

Out[1]=1

Plot the absolute values of the higher derivatives of with respect to :

Out[2]=2

Formula for the ^(th) derivative with respect to z:

Out[1]=1

Integration  (3)

Compute the indefinite integral using Integrate:

Out[1]=1

Definite integral:

Out[1]=1

More integrals:

Out[1]=1
Out[2]=2

Series Expansions  (4)

Find the Taylor expansion using Series:

Out[1]=1

General term in the series expansion using SeriesCoefficient:

Out[1]=1

Find the series expansion at Infinity:

Out[1]=1

Taylor expansion at a generic point:

Out[1]=1

Function Identities and Simplifications  (2)

Use FullSimplify to simplify spherical Hankel functions of the first kind:

Out[1]=1

Recurrence relations:

Out[1]=1

Properties & Relations  (1)Properties of the function, and connections to other functions

Out[1]=1
Wolfram Research (2007), SphericalHankelH1, Wolfram Language function, https://reference.wolfram.com/language/ref/SphericalHankelH1.html.
Wolfram Research (2007), SphericalHankelH1, Wolfram Language function, https://reference.wolfram.com/language/ref/SphericalHankelH1.html.

Text

Wolfram Research (2007), SphericalHankelH1, Wolfram Language function, https://reference.wolfram.com/language/ref/SphericalHankelH1.html.

Wolfram Research (2007), SphericalHankelH1, Wolfram Language function, https://reference.wolfram.com/language/ref/SphericalHankelH1.html.

CMS

Wolfram Language. 2007. "SphericalHankelH1." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SphericalHankelH1.html.

Wolfram Language. 2007. "SphericalHankelH1." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SphericalHankelH1.html.

APA

Wolfram Language. (2007). SphericalHankelH1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SphericalHankelH1.html

Wolfram Language. (2007). SphericalHankelH1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SphericalHankelH1.html

BibTeX

@misc{reference.wolfram_2025_sphericalhankelh1, author="Wolfram Research", title="{SphericalHankelH1}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SphericalHankelH1.html}", note=[Accessed: 25-April-2025 ]}

@misc{reference.wolfram_2025_sphericalhankelh1, author="Wolfram Research", title="{SphericalHankelH1}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SphericalHankelH1.html}", note=[Accessed: 25-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_sphericalhankelh1, organization={Wolfram Research}, title={SphericalHankelH1}, year={2007}, url={https://reference.wolfram.com/language/ref/SphericalHankelH1.html}, note=[Accessed: 25-April-2025 ]}

@online{reference.wolfram_2025_sphericalhankelh1, organization={Wolfram Research}, title={SphericalHankelH1}, year={2007}, url={https://reference.wolfram.com/language/ref/SphericalHankelH1.html}, note=[Accessed: 25-April-2025 ]}