SpheroidalEigenvalue
SpheroidalEigenvalue[n,m,γ]
gives the spheroidal eigenvalue with degree and order .
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- The spheroidal eigenvalues for successive correspond to the successive values of for which there exist normalizable solutions to the differential equation .
- SpheroidalEigenvalue[n,m,0]is equal to .
- For certain special arguments, SpheroidalEigenvalue automatically evaluates to exact values.
- SpheroidalEigenvalue can be evaluated to arbitrary numerical precision.
- SpheroidalEigenvalue automatically threads over lists. »
Examples
open allclose allBasic Examples (4)
Plot over a subset of the reals:
Series expansion in the spherical limit as γ approaches 0:
Series expansion at Infinity:
Scope (14)
Numerical Evaluation (5)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute the elementwise values of an array using automatic threading:
Or compute the matrix SpheroidalEigenvalue function using MatrixFunction:
Specific Values (7)
Simple exact values are generated automatically:
Evaluate symbolically for integer parameters:
Evaluate symbolically for half-integer parameters:
Find the maximum of SpheroidalEigenvalue[1,2/3,x]:
SpheroidalEigenvalue evaluates exactly if m=1 and γ=n π/2:
SpheroidalEigenvalue threads elementwise over lists:
TraditionalForm formatting:
Visualization (2)
Plot the SpheroidalEigenvalue function for integer orders:
Applications (3)
Solve the spheroidal differential equation:
Solve this spheroidal-type differential equation:
Find a branch point of SpheroidalEigenvalue:
Properties & Relations (1)
For half-integer values, the SpheroidalEigenvalue reduces to the MathieuCharacteristicA function:
Possible Issues (1)
SpheroidalEigenvalue does not evaluate for half-integer or for generic :
The half-integer values of are singular for the near-spherical expansion:
Text
Wolfram Research (2007), SpheroidalEigenvalue, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalEigenvalue.html.
CMS
Wolfram Language. 2007. "SpheroidalEigenvalue." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalEigenvalue.html.
APA
Wolfram Language. (2007). SpheroidalEigenvalue. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalEigenvalue.html