ZeroSymmetric

ZeroSymmetric[{s1,,sn}]

represents the symmetry of a zero tensor in the slots si.

Details

  • The slots si must be different positive numbers. The order of the list is irrelevant.
  • TensorSymmetry on zero tensors canonicalizes the result to ZeroSymmetric[{}].

Examples

open allclose all

Basic Examples  (2)

Symmetry of a zero array:

Declare a symbolic array with the zero symmetry:

Then that symbolic array is actually a zero tensor:

Scope  (2)

Symmetry of arrays of zeros:

Declare an antisymmetric symbolic array:

Any contraction is then a zero tensor, and hence has zero symmetry:

Properties & Relations  (3)

A tensor with symmetry ZeroSymmetric[] does not have independent components:

Construct a symmetrized array with ZeroSymmetric[] symmetry:

It is the zero tensor:

Symmetrization with respect to the zero symmetry returns a zero tensor:

Wolfram Research (2012), ZeroSymmetric, Wolfram Language function, https://reference.wolfram.com/language/ref/ZeroSymmetric.html.

Text

Wolfram Research (2012), ZeroSymmetric, Wolfram Language function, https://reference.wolfram.com/language/ref/ZeroSymmetric.html.

CMS

Wolfram Language. 2012. "ZeroSymmetric." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ZeroSymmetric.html.

APA

Wolfram Language. (2012). ZeroSymmetric. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ZeroSymmetric.html

BibTeX

@misc{reference.wolfram_2024_zerosymmetric, author="Wolfram Research", title="{ZeroSymmetric}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/ZeroSymmetric.html}", note=[Accessed: 30-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_zerosymmetric, organization={Wolfram Research}, title={ZeroSymmetric}, year={2012}, url={https://reference.wolfram.com/language/ref/ZeroSymmetric.html}, note=[Accessed: 30-December-2024 ]}