# ZeroSymmetric

ZeroSymmetric[{s1,,sn}]

represents the symmetry of a zero tensor in the slots si.

# Details

• The slots si must be different positive numbers. The order of the list is irrelevant.
• TensorSymmetry on zero tensors canonicalizes the result to ZeroSymmetric[{}].

# Examples

open allclose all

## Basic Examples(2)

Symmetry of a zero array:

Declare a symbolic array with the zero symmetry:

Then that symbolic array is actually a zero tensor:

## Scope(2)

Symmetry of arrays of zeros:

Declare an antisymmetric symbolic array:

Any contraction is then a zero tensor, and hence has zero symmetry:

## Properties & Relations(3)

A tensor with symmetry does not have independent components:

Construct a symmetrized array with symmetry:

It is the zero tensor:

Symmetrization with respect to the zero symmetry returns a zero tensor:

Wolfram Research (2012), ZeroSymmetric, Wolfram Language function, https://reference.wolfram.com/language/ref/ZeroSymmetric.html.

#### Text

Wolfram Research (2012), ZeroSymmetric, Wolfram Language function, https://reference.wolfram.com/language/ref/ZeroSymmetric.html.

#### CMS

Wolfram Language. 2012. "ZeroSymmetric." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ZeroSymmetric.html.

#### APA

Wolfram Language. (2012). ZeroSymmetric. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ZeroSymmetric.html

#### BibTeX

@misc{reference.wolfram_2024_zerosymmetric, author="Wolfram Research", title="{ZeroSymmetric}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/ZeroSymmetric.html}", note=[Accessed: 23-July-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_zerosymmetric, organization={Wolfram Research}, title={ZeroSymmetric}, year={2012}, url={https://reference.wolfram.com/language/ref/ZeroSymmetric.html}, note=[Accessed: 23-July-2024 ]}