BarabasiAlbertGraphDistribution
✖
BarabasiAlbertGraphDistribution
represents a Barabasi–Albert graph distribution for n-vertex graphs where a new vertex with k edges is added at each step.
Details

- BarabasiAlbertGraphDistribution is also known as scale-free graph distribution.
- The BarabasiAlbertGraphDistribution is constructed starting from CycleGraph[3], and a vertex with k edges is added at each step. The k edges are attached to vertices at random, following a distribution proportional to the vertex degree.
- BarabasiAlbertGraphDistribution can be used with such functions as RandomGraph and GraphPropertyDistribution.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Generate a pseudorandom graph:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-yg5284


https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-sy45hm

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-6kpmxy


https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-o0xrtw

Scope (3)Survey of the scope of standard use cases
Generate simple undirected graphs:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-2cq0pg

Generate a set of pseudorandom graphs:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-y6wkjj

Compute probabilities and statistical properties:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-hso99s

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-h18ttv

Applications (3)Sample problems that can be solved with this function
The internet at the level of autonomous systems can be modeled with BarabasiAlbertGraphDistribution:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-ni36gl

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-qbehy8

The model captures the power-law nature of the empirical degree distribution:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-czisbn

The model has a lower clustering coefficient:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-nihcv


https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-fvh2ge

Use the Barabasi–Albert graph distribution as a model of the Western States Power Grid network:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-j93wjw

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-8x68dd

The model captures the power-law nature of the empirical degree distribution:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-bxel6h

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-yd3kkm

A social network with 400 people and prominent hubs is modeled with BarabasiAlbertGraphDistribution. Find the expected number of ties separating a person at the hub from the most remote person in the network:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-t0wttd

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-d9domo

Properties & Relations (5)Properties of the function, and connections to other functions
Distribution of the number of vertices:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-nrpf1s

Distribution of the number of edges:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-c8umns


https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-ug7002
The distribution can be approximated by ZipfDistribution:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-ces1w7

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-1iz79a

The degree distribution follows a power law:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-bhkvm8

Use RandomSample to simulate a BarabasiAlbertGraphDistribution:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-o7pszz

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-ys2col

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-ofze7f

In BarabasiAlbertGraphDistribution[n,k], there is a maximum clique of size k+1:

https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-82cqji


https://wolfram.com/xid/0x8wrak8962usdivvlicpaca-e3kd3w

Wolfram Research (2010), BarabasiAlbertGraphDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html.
Text
Wolfram Research (2010), BarabasiAlbertGraphDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html.
Wolfram Research (2010), BarabasiAlbertGraphDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html.
CMS
Wolfram Language. 2010. "BarabasiAlbertGraphDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html.
Wolfram Language. 2010. "BarabasiAlbertGraphDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html.
APA
Wolfram Language. (2010). BarabasiAlbertGraphDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html
Wolfram Language. (2010). BarabasiAlbertGraphDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html
BibTeX
@misc{reference.wolfram_2025_barabasialbertgraphdistribution, author="Wolfram Research", title="{BarabasiAlbertGraphDistribution}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_barabasialbertgraphdistribution, organization={Wolfram Research}, title={BarabasiAlbertGraphDistribution}, year={2010}, url={https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html}, note=[Accessed: 29-March-2025
]}