WOLFRAM

represents a BarabasiAlbert graph distribution for n-vertex graphs where a new vertex with k edges is added at each step.

Details

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Generate a pseudorandom graph:

Out[1]=1

Degree distribution:

Out[2]=2

Probability density function:

Out[3]=3

Scope  (3)Survey of the scope of standard use cases

Generate simple undirected graphs:

Out[1]=1

Generate a set of pseudorandom graphs:

Out[1]=1

Compute probabilities and statistical properties:

Out[2]=2

Applications  (3)Sample problems that can be solved with this function

The internet at the level of autonomous systems can be modeled with BarabasiAlbertGraphDistribution:

Out[2]=2

The model captures the power-law nature of the empirical degree distribution:

Out[3]=3

The model has a lower clustering coefficient:

Out[4]=4
Out[5]=5

Use the BarabasiAlbert graph distribution as a model of the Western States Power Grid network:

Out[2]=2

The model captures the power-law nature of the empirical degree distribution:

Out[4]=4

A social network with 400 people and prominent hubs is modeled with BarabasiAlbertGraphDistribution. Find the expected number of ties separating a person at the hub from the most remote person in the network:

Out[2]=2

Properties & Relations  (5)Properties of the function, and connections to other functions

Distribution of the number of vertices:

Out[1]=1

Distribution of the number of edges:

Out[1]=1

Degree distribution:

The distribution can be approximated by ZipfDistribution:

Out[3]=3

The degree distribution follows a power law:

Out[4]=4

Use RandomSample to simulate a BarabasiAlbertGraphDistribution:

Pseudorandom graphs:

Out[3]=3

In BarabasiAlbertGraphDistribution[n,k], there is a maximum clique of size k+1:

Out[1]=1
Out[2]=2

Neat Examples  (1)Surprising or curious use cases

Randomly colored vertices:

Out[1]=1
Wolfram Research (2010), BarabasiAlbertGraphDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html.
Wolfram Research (2010), BarabasiAlbertGraphDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html.

Text

Wolfram Research (2010), BarabasiAlbertGraphDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html.

Wolfram Research (2010), BarabasiAlbertGraphDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html.

CMS

Wolfram Language. 2010. "BarabasiAlbertGraphDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html.

Wolfram Language. 2010. "BarabasiAlbertGraphDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html.

APA

Wolfram Language. (2010). BarabasiAlbertGraphDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html

Wolfram Language. (2010). BarabasiAlbertGraphDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html

BibTeX

@misc{reference.wolfram_2025_barabasialbertgraphdistribution, author="Wolfram Research", title="{BarabasiAlbertGraphDistribution}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html}", note=[Accessed: 29-March-2025 ]}

@misc{reference.wolfram_2025_barabasialbertgraphdistribution, author="Wolfram Research", title="{BarabasiAlbertGraphDistribution}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html}", note=[Accessed: 29-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_barabasialbertgraphdistribution, organization={Wolfram Research}, title={BarabasiAlbertGraphDistribution}, year={2010}, url={https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html}, note=[Accessed: 29-March-2025 ]}

@online{reference.wolfram_2025_barabasialbertgraphdistribution, organization={Wolfram Research}, title={BarabasiAlbertGraphDistribution}, year={2010}, url={https://reference.wolfram.com/language/ref/BarabasiAlbertGraphDistribution.html}, note=[Accessed: 29-March-2025 ]}