Complexes
✖
Complexes
Details

- x∈Complexes evaluates immediately only if x is a numeric quantity.
- Simplify[expr∈Complexes] can be used to try to determine whether an expression corresponds to a complex number.
- The domain of real numbers is taken to be a subset of the domain of complex numbers.
- Complexes is output in StandardForm or TraditionalForm as
. This typeset form can be input using
comps
.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases

https://wolfram.com/xid/0c11oly-gfxecg

Exponential of a complex number is a complex number:

https://wolfram.com/xid/0c11oly-iqwka5

Find complex numbers that make an inequality well defined and True:

https://wolfram.com/xid/0c11oly-eqszwi

Scope (2)Survey of the scope of standard use cases
Specify that all variables should be considered complex, even if they appear in inequalities:

https://wolfram.com/xid/0c11oly-d1s04z

By default, Reduce considers all variables that appear in inequalities to be real:

https://wolfram.com/xid/0c11oly-zou29

For every real number y there exists a complex number whose square is real and less than y:

https://wolfram.com/xid/0c11oly-b00i4q

By default, Resolve considers all variables that appear in inequalities to be real:

https://wolfram.com/xid/0c11oly-iud0w

TraditionalForm of formatting:

https://wolfram.com/xid/0c11oly-4xdcq9

Properties & Relations (2)Properties of the function, and connections to other functions
Wolfram Research (1999), Complexes, Wolfram Language function, https://reference.wolfram.com/language/ref/Complexes.html (updated 2017).
Text
Wolfram Research (1999), Complexes, Wolfram Language function, https://reference.wolfram.com/language/ref/Complexes.html (updated 2017).
Wolfram Research (1999), Complexes, Wolfram Language function, https://reference.wolfram.com/language/ref/Complexes.html (updated 2017).
CMS
Wolfram Language. 1999. "Complexes." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/Complexes.html.
Wolfram Language. 1999. "Complexes." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/Complexes.html.
APA
Wolfram Language. (1999). Complexes. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Complexes.html
Wolfram Language. (1999). Complexes. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Complexes.html
BibTeX
@misc{reference.wolfram_2025_complexes, author="Wolfram Research", title="{Complexes}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/Complexes.html}", note=[Accessed: 06-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_complexes, organization={Wolfram Research}, title={Complexes}, year={2017}, url={https://reference.wolfram.com/language/ref/Complexes.html}, note=[Accessed: 06-April-2025
]}