WOLFRAM

represents the domain of complex numbers, as in xComplexes.

Details

  • xComplexes evaluates immediately only if x is a numeric quantity.
  • Simplify[exprComplexes] can be used to try to determine whether an expression corresponds to a complex number.
  • The domain of real numbers is taken to be a subset of the domain of complex numbers.
  • Complexes is output in StandardForm or TraditionalForm as TemplateBox[{}, Complexes]. This typeset form can be input using comps.

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

is a complex number:

Out[1]=1

Exponential of a complex number is a complex number:

Out[1]=1

Find complex numbers that make an inequality well defined and True:

Out[1]=1

Scope  (2)Survey of the scope of standard use cases

Specify that all variables should be considered complex, even if they appear in inequalities:

Out[1]=1

By default, Reduce considers all variables that appear in inequalities to be real:

Out[2]=2

For every real number y there exists a complex number whose square is real and less than y:

Out[3]=3

By default, Resolve considers all variables that appear in inequalities to be real:

Out[4]=4

TraditionalForm of formatting:

Properties & Relations  (2)Properties of the function, and connections to other functions

Complexes contains Reals, Algebraics, Rationals, Integers, and Primes:

Out[1]=1

Infinite quantities are not considered part of the Complexes:

Out[1]=1
Wolfram Research (1999), Complexes, Wolfram Language function, https://reference.wolfram.com/language/ref/Complexes.html (updated 2017).
Wolfram Research (1999), Complexes, Wolfram Language function, https://reference.wolfram.com/language/ref/Complexes.html (updated 2017).

Text

Wolfram Research (1999), Complexes, Wolfram Language function, https://reference.wolfram.com/language/ref/Complexes.html (updated 2017).

Wolfram Research (1999), Complexes, Wolfram Language function, https://reference.wolfram.com/language/ref/Complexes.html (updated 2017).

CMS

Wolfram Language. 1999. "Complexes." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/Complexes.html.

Wolfram Language. 1999. "Complexes." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/Complexes.html.

APA

Wolfram Language. (1999). Complexes. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Complexes.html

Wolfram Language. (1999). Complexes. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Complexes.html

BibTeX

@misc{reference.wolfram_2025_complexes, author="Wolfram Research", title="{Complexes}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/Complexes.html}", note=[Accessed: 06-April-2025 ]}

@misc{reference.wolfram_2025_complexes, author="Wolfram Research", title="{Complexes}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/Complexes.html}", note=[Accessed: 06-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_complexes, organization={Wolfram Research}, title={Complexes}, year={2017}, url={https://reference.wolfram.com/language/ref/Complexes.html}, note=[Accessed: 06-April-2025 ]}

@online{reference.wolfram_2025_complexes, organization={Wolfram Research}, title={Complexes}, year={2017}, url={https://reference.wolfram.com/language/ref/Complexes.html}, note=[Accessed: 06-April-2025 ]}