MathieuS

MathieuS[a,q,z]

gives the odd Mathieu function with characteristic value a and parameter q.

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • The Mathieu functions satisfy the equation .
  • For certain special arguments, MathieuS automatically evaluates to exact values.
  • MathieuS can be evaluated to arbitrary numerical precision.
  • MathieuS automatically threads over lists.

Examples

open allclose all

Basic Examples  (4)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Scope  (19)

Numerical Evaluation  (4)

Evaluate numerically to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments and parameters:

Evaluate MathieuS efficiently at high precision:

MathieuS threads elementwise over lists:

Specific Values  (3)

Simple exact values are generated automatically:

Find a local maximum as the root of in the maximum's neighborhood:

MathieuS is an odd function:

Visualization  (3)

Plot the MathieuS function:

Plot the real part of MathieuS for and :

Plot the imaginary part of MathieuS for and :

Plot the real part of MathieuS for and :

Plot the imaginary part of MathieuS for and :

Function Properties  (4)

MathieuS has singularities and discontinuities when the characteristic exponent is an integer:

is neither nondecreasing nor nonincreasing:

MathieuS is neither non-negative nor non-positive:

MathieuS is neither convex nor concave:

Differentiation  (3)

First derivative:

Higher derivatives:

Plot higher derivatives for and :

Plot higher derivatives for and :

Mathieu functions are the solutions to the differential equation :

Series Expansions  (2)

Taylor expansion:

Plot the first three approximations for MathieuS around :

Taylor expansion of MathieuS at a generic point:

Applications  (3)

This differential equation is solved in terms of MathieuC and MathieuS functions:

Solve the Schrödinger equation with periodic potential:

By the Bloch theorem, solutions are bounded provided is within an energy band. The energy gap corresponds to a range of where MathieuCharacteristicExponent has a non-vanishing imaginary part:

Solve the Laplace equation in an ellipse using separation of variables:

This finds a zero:

This plots an eigenfunction. It vanishes at the ellipse boundary:

Possible Issues  (1)

Machine-precision input is insufficient to give a correct answer:

Neat Examples  (1)

Phase space plots of the Mathieu function:

Wolfram Research (1996), MathieuS, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuS.html.

Text

Wolfram Research (1996), MathieuS, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuS.html.

CMS

Wolfram Language. 1996. "MathieuS." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MathieuS.html.

APA

Wolfram Language. (1996). MathieuS. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MathieuS.html

BibTeX

@misc{reference.wolfram_2023_mathieus, author="Wolfram Research", title="{MathieuS}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/MathieuS.html}", note=[Accessed: 18-March-2024 ]}

BibLaTeX

@online{reference.wolfram_2023_mathieus, organization={Wolfram Research}, title={MathieuS}, year={1996}, url={https://reference.wolfram.com/language/ref/MathieuS.html}, note=[Accessed: 18-March-2024 ]}