WOLFRAM

yields True if a is a root of unity, and yields False otherwise.

Details

  • An algebraic number a is a root of unity if an=1 for some integer n.

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Out[1]=1
Out[2]=2

Scope  (5)Survey of the scope of standard use cases

Radical expressions:

Out[1]=1

Root objects:

Out[1]=1

AlgebraicNumber objects:

Out[1]=1

Transcendental objects:

Out[1]=1

RootOfUnityQ threads automatically over lists:

Out[1]=1

Properties & Relations  (4)Properties of the function, and connections to other functions

Roots of unity are solutions of for some integer n:

Out[2]=2

All roots of unity are algebraic integers that lie on the unit circle:

Out[3]=3
Out[4]=4

Not all algebraic numbers on the unit circle are roots of unity:

Out[1]=1
Out[2]=2

The minimal polynomial of a root of unity is a cyclotomic polynomial or one of its factor:

Out[2]=2
Out[3]=3

Roots of cyclotomic polynomials are roots of unity:

Out[4]=4
Out[5]=5

Use NumberFieldRootsOfUnity to find all roots of unity in a number field:

Out[1]=1
Out[2]=2

Possible Issues  (1)Common pitfalls and unexpected behavior

Approximate numbers will always return False:

Out[1]=1

Use RootApproximant to get an exact number:

Out[2]=2
Out[3]=3
Wolfram Research (2007), RootOfUnityQ, Wolfram Language function, https://reference.wolfram.com/language/ref/RootOfUnityQ.html.
Wolfram Research (2007), RootOfUnityQ, Wolfram Language function, https://reference.wolfram.com/language/ref/RootOfUnityQ.html.

Text

Wolfram Research (2007), RootOfUnityQ, Wolfram Language function, https://reference.wolfram.com/language/ref/RootOfUnityQ.html.

Wolfram Research (2007), RootOfUnityQ, Wolfram Language function, https://reference.wolfram.com/language/ref/RootOfUnityQ.html.

CMS

Wolfram Language. 2007. "RootOfUnityQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RootOfUnityQ.html.

Wolfram Language. 2007. "RootOfUnityQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RootOfUnityQ.html.

APA

Wolfram Language. (2007). RootOfUnityQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RootOfUnityQ.html

Wolfram Language. (2007). RootOfUnityQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RootOfUnityQ.html

BibTeX

@misc{reference.wolfram_2025_rootofunityq, author="Wolfram Research", title="{RootOfUnityQ}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/RootOfUnityQ.html}", note=[Accessed: 04-April-2025 ]}

@misc{reference.wolfram_2025_rootofunityq, author="Wolfram Research", title="{RootOfUnityQ}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/RootOfUnityQ.html}", note=[Accessed: 04-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_rootofunityq, organization={Wolfram Research}, title={RootOfUnityQ}, year={2007}, url={https://reference.wolfram.com/language/ref/RootOfUnityQ.html}, note=[Accessed: 04-April-2025 ]}

@online{reference.wolfram_2025_rootofunityq, organization={Wolfram Research}, title={RootOfUnityQ}, year={2007}, url={https://reference.wolfram.com/language/ref/RootOfUnityQ.html}, note=[Accessed: 04-April-2025 ]}