- 
    Functions
    
- AlgebraicIntegerQ
 - AlgebraicNumber
 - AlgebraicNumberDenominator
 - AlgebraicNumberNorm
 - AlgebraicNumberPolynomial
 - AlgebraicNumberTrace
 - AlgebraicUnitQ
 - Extension
 - Factor
 - FactorInteger
 - GaussianIntegers
 - IsolatingInterval
 - MinimalPolynomial
 - NumberFieldClassNumber
 - NumberFieldDiscriminant
 - NumberFieldFundamentalUnits
 - NumberFieldIntegralBasis
 - NumberFieldNormRepresentatives
 - NumberFieldRegulator
 - NumberFieldRootsOfUnity
 - NumberFieldSignature
 - Root
 - RootApproximant
 - RootOfUnityQ
 - RootReduce
 - ToNumberField
 - ToRadicals
 
 - Related Guides
 - Tech Notes
 - 
    
    
- 
      Functions
      
- AlgebraicIntegerQ
 - AlgebraicNumber
 - AlgebraicNumberDenominator
 - AlgebraicNumberNorm
 - AlgebraicNumberPolynomial
 - AlgebraicNumberTrace
 - AlgebraicUnitQ
 - Extension
 - Factor
 - FactorInteger
 - GaussianIntegers
 - IsolatingInterval
 - MinimalPolynomial
 - NumberFieldClassNumber
 - NumberFieldDiscriminant
 - NumberFieldFundamentalUnits
 - NumberFieldIntegralBasis
 - NumberFieldNormRepresentatives
 - NumberFieldRegulator
 - NumberFieldRootsOfUnity
 - NumberFieldSignature
 - Root
 - RootApproximant
 - RootOfUnityQ
 - RootReduce
 - ToNumberField
 - ToRadicals
 
 - Related Guides
 - Tech Notes
 
 - 
      Functions
      
 
Algebraic Number Theory
With its convenient symbolic representation of algebraic numbers, the Wolfram Language's state-of-the-art algebraic number theory capabilities provide a concrete implementation of one of the historically richest areas of pure mathematics—all tightly integrated with the Wolfram Language's powerful unified environment.
Algebraic Numbers and Representation »
AlgebraicNumber — algebraic number represented in a particular field
Root — represent a root of a polynomial
RootApproximant — root approximation
IsolatingInterval ▪ MinimalPolynomial ▪ AlgebraicNumberPolynomial ▪ ...
AlgebraicIntegerQ ▪ AlgebraicUnitQ ▪ RootOfUnityQ
AlgebraicNumberNorm ▪ AlgebraicNumberTrace ▪ AlgebraicNumberDenominator
Algebraic Number Fields
ToNumberField — find a common field, or express numbers in a given field
NumberFieldIntegralBasis ▪ NumberFieldClassNumber ▪ NumberFieldDiscriminant
NumberFieldRegulator ▪ NumberFieldSignature
NumberFieldNormRepresentatives ▪ NumberFieldFundamentalUnits ▪ NumberFieldRootsOfUnity
Factorization
FactorInteger — factorization of integers
Factor — factorization of polynomials
GaussianIntegers — allow factorization over Gaussian integers
Extension — field extension for number theoretic and polynomial operations
RootReduce — reduce an algebraic number to minimal Root form
ToRadicals — convert to explicit radicals