AlgebraicNumberDenominator

AlgebraicNumberDenominator[a]

gives the smallest positive integer n such that n a is an algebraic integer.

Examples

open allclose all

Basic Examples  (2)

Scope  (3)

Radical expressions:

Root and AlgebraicNumber objects:

AlgebraicNumberDenominator automatically threads over lists:

Applications  (1)

Representation of 1/(1+) as a quotient α/n of an algebraic integer α and an integer n:

Properties & Relations  (2)

For an algebraic integer n, the denominator is 1:

Multiplying an algebraic number by its denominator gives an algebraic integer:

Possible Issues  (1)

The argument must be an algebraic number:

Wolfram Research (2007), AlgebraicNumberDenominator, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.

Text

Wolfram Research (2007), AlgebraicNumberDenominator, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.

CMS

Wolfram Language. 2007. "AlgebraicNumberDenominator." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.

APA

Wolfram Language. (2007). AlgebraicNumberDenominator. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html

BibTeX

@misc{reference.wolfram_2024_algebraicnumberdenominator, author="Wolfram Research", title="{AlgebraicNumberDenominator}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html}", note=[Accessed: 30-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_algebraicnumberdenominator, organization={Wolfram Research}, title={AlgebraicNumberDenominator}, year={2007}, url={https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html}, note=[Accessed: 30-December-2024 ]}