AlgebraicNumberPolynomial

AlgebraicNumberPolynomial[a,x]

gives the polynomial in x corresponding to the AlgebraicNumber object a.

Details

Examples

open allclose all

Basic Examples  (1)

Scope  (3)

Integers and rational numbers:

AlgebraicNumber objects:

AlgebraicNumberPolynomial threads automatically over lists:

Applications  (1)

Addition of algebraic numbers using polynomials:

An equivalent way of performing the same operation:

Properties & Relations  (1)

AlgebraicNumber by definition is a polynomial function of an algebraic number:

Possible Issues  (1)

The input must be an AlgebraicNumber object or a rational number:

Wolfram Research (2007), AlgebraicNumberPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html.

Text

Wolfram Research (2007), AlgebraicNumberPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html.

CMS

Wolfram Language. 2007. "AlgebraicNumberPolynomial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html.

APA

Wolfram Language. (2007). AlgebraicNumberPolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html

BibTeX

@misc{reference.wolfram_2024_algebraicnumberpolynomial, author="Wolfram Research", title="{AlgebraicNumberPolynomial}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html}", note=[Accessed: 30-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_algebraicnumberpolynomial, organization={Wolfram Research}, title={AlgebraicNumberPolynomial}, year={2007}, url={https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html}, note=[Accessed: 30-December-2024 ]}