AlgebraicNumberNorm
✖
AlgebraicNumberNorm
Details and Options

- The norm of a is defined to be the product of the roots of its minimal polynomial.
- AlgebraicNumberNorm[a,Extension->θ] finds the norm of a over the field
.
Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Scope (4)Survey of the scope of standard use cases
Integers and rational numbers:

https://wolfram.com/xid/0btn1pdqw9ra-7ksa7f


https://wolfram.com/xid/0btn1pdqw9ra-0uqmb0


https://wolfram.com/xid/0btn1pdqw9ra-poo44j

Root and AlgebraicNumber objects:

https://wolfram.com/xid/0btn1pdqw9ra-w3a6kl


https://wolfram.com/xid/0btn1pdqw9ra-qve1l5

AlgebraicNumberNorm automatically threads over lists:

https://wolfram.com/xid/0btn1pdqw9ra-gy6c3t

Options (1)Common values & functionality for each option
Applications (1)Sample problems that can be solved with this function

https://wolfram.com/xid/0btn1pdqw9ra-trkj2c

Since AlgebraicNumberNorm is multiplicative, having a prime norm implies the original number is prime:

https://wolfram.com/xid/0btn1pdqw9ra-4t52km

Properties & Relations (3)Properties of the function, and connections to other functions
AlgebraicNumberNorm is multiplicative:

https://wolfram.com/xid/0btn1pdqw9ra-3osxzb


https://wolfram.com/xid/0btn1pdqw9ra-p99r75

Units in a number field have norm :

https://wolfram.com/xid/0btn1pdqw9ra-9r13z5


https://wolfram.com/xid/0btn1pdqw9ra-u1dc6l

Compute the smallest field that includes , i.e.
:

https://wolfram.com/xid/0btn1pdqw9ra-bvnwy3

Compute the norm in that field:

https://wolfram.com/xid/0btn1pdqw9ra-owxq2

Wolfram Research (2007), AlgebraicNumberNorm, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberNorm.html.
Text
Wolfram Research (2007), AlgebraicNumberNorm, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberNorm.html.
Wolfram Research (2007), AlgebraicNumberNorm, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberNorm.html.
CMS
Wolfram Language. 2007. "AlgebraicNumberNorm." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AlgebraicNumberNorm.html.
Wolfram Language. 2007. "AlgebraicNumberNorm." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AlgebraicNumberNorm.html.
APA
Wolfram Language. (2007). AlgebraicNumberNorm. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AlgebraicNumberNorm.html
Wolfram Language. (2007). AlgebraicNumberNorm. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AlgebraicNumberNorm.html
BibTeX
@misc{reference.wolfram_2025_algebraicnumbernorm, author="Wolfram Research", title="{AlgebraicNumberNorm}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/AlgebraicNumberNorm.html}", note=[Accessed: 29-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_algebraicnumbernorm, organization={Wolfram Research}, title={AlgebraicNumberNorm}, year={2007}, url={https://reference.wolfram.com/language/ref/AlgebraicNumberNorm.html}, note=[Accessed: 29-April-2025
]}