gives the trace of the algebraic number a.


AlgebraicNumberTrace
gives the trace of the algebraic number a.
Details and Options

- The trace of a is defined to be the sum of the roots of its minimal polynomial.
- AlgebraicNumberTrace[a,Extension->θ] finds the trace of a over the field
.
Examples
open all close allBasic Examples (1)
Scope (4)
Integers and rational numbers:
Root and AlgebraicNumber objects:
AlgebraicNumberTrace automatically threads over lists:
Properties & Relations (3)
AlgebraicNumberTrace is additive:
Use ToNumberField to find the trace of in the field
:
Tech Notes
Related Guides
History
Text
Wolfram Research (2007), AlgebraicNumberTrace, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberTrace.html.
CMS
Wolfram Language. 2007. "AlgebraicNumberTrace." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AlgebraicNumberTrace.html.
APA
Wolfram Language. (2007). AlgebraicNumberTrace. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AlgebraicNumberTrace.html
BibTeX
@misc{reference.wolfram_2025_algebraicnumbertrace, author="Wolfram Research", title="{AlgebraicNumberTrace}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/AlgebraicNumberTrace.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_algebraicnumbertrace, organization={Wolfram Research}, title={AlgebraicNumberTrace}, year={2007}, url={https://reference.wolfram.com/language/ref/AlgebraicNumberTrace.html}, note=[Accessed: 13-August-2025]}