WOLFRAM SYSTEM MODELER

dgeev_eigenValues

Compute eigenvalues for real nonsymmetric matrix A

Wolfram Language

In[1]:=
SystemModel["Modelica.Math.Matrices.LAPACK.dgeev_eigenValues"]
Out[1]:=

Information

This information is part of the Modelica Standard Library maintained by the Modelica Association.

Lapack documentation
    Purpose
    =======

    DGEEV computes for an N-by-N real nonsymmetric matrix A, the
    eigenvalues and, optionally, the left and/or right eigenvectors.

    The right eigenvector v(j) of A satisfies
                     A * v(j) = lambda(j) * v(j)
    where lambda(j) is its eigenvalue.
    The left eigenvector u(j) of A satisfies
                  u(j)**H * A = lambda(j) * u(j)**H
    where u(j)**H denotes the conjugate transpose of u(j).

    The computed eigenvectors are normalized to have Euclidean norm
    equal to 1 and largest component real.

    Arguments
    =========

    JOBVL   (input) CHARACTER*1
            = 'N': left eigenvectors of A are not computed;
            = 'V': left eigenvectors of A are computed.

    JOBVR   (input) CHARACTER*1
            = 'N': right eigenvectors of A are not computed;
            = 'V': right eigenvectors of A are computed.

    N       (input) INTEGER
            The order of the matrix A. N >= 0.

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
            On entry, the N-by-N matrix A.
            On exit, A has been overwritten.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    WR      (output) DOUBLE PRECISION array, dimension (N)
    WI      (output) DOUBLE PRECISION array, dimension (N)
            WR and WI contain the real and imaginary parts,
            respectively, of the computed eigenvalues.  Complex
            conjugate pairs of eigenvalues appear consecutively
            with the eigenvalue having the positive imaginary part
            first.

    VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
            If JOBVL = 'V', the left eigenvectors u(j) are stored one
            after another in the columns of VL, in the same order
            as their eigenvalues.
            If JOBVL = 'N', VL is not referenced.
            If the j-th eigenvalue is real, then u(j) = VL(:,j),
            the j-th column of VL.
            If the j-th and (j+1)-st eigenvalues form a complex
            conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
            u(j+1) = VL(:,j) - i*VL(:,j+1).

    LDVL    (input) INTEGER
            The leading dimension of the array VL.  LDVL >= 1; if
            JOBVL = 'V', LDVL >= N.

    VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
            If JOBVR = 'V', the right eigenvectors v(j) are stored one
            after another in the columns of VR, in the same order
            as their eigenvalues.
            If JOBVR = 'N', VR is not referenced.
            If the j-th eigenvalue is real, then v(j) = VR(:,j),
            the j-th column of VR.
            If the j-th and (j+1)-st eigenvalues form a complex
            conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
            v(j+1) = VR(:,j) - i*VR(:,j+1).

    LDVR    (input) INTEGER
            The leading dimension of the array VR.  LDVR >= 1; if
            JOBVR = 'V', LDVR >= N.

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The dimension of the array WORK.  LWORK >= max(1,3*N), and
            if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good
            performance, LWORK must generally be larger.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value.
            > 0:  if INFO = i, the QR algorithm failed to compute all the
                  eigenvalues, and no eigenvectors have been computed;
                  elements i+1:N of WR and WI contain eigenvalues which
                  have converged.

Syntax

(EigenReal, EigenImag, info) = dgeev_eigenValues(A)

Inputs (1)

A

Type: Real[:,size(A, 1)]

Outputs (3)

EigenReal

Type: Real[size(A, 1)]

EigenImag

Type: Real[size(A, 1)]

info

Type: Integer