WOLFRAM SYSTEM MODELER
dgesvSolve real system of linear equations A*X=B with a B matrix |
SystemModel["Modelica.Math.Matrices.LAPACK.dgesv"]
This information is part of the Modelica Standard Library maintained by the Modelica Association.
Lapack documentation Purpose ======= DGESV computes the solution to a real system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B. Arguments ========= N (input) INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N coefficient matrix A. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV (output) INTEGER array, dimension (N) The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row IPIV(i). B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the N-by-NRHS matrix of right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.
A |
Type: Real[:,size(A, 1)] |
---|---|
B |
Type: Real[size(A, 1),:] |
X |
Default Value: B Type: Real[size(A, 1),size(B, 2)] |
---|---|
info |
Type: Integer |