WOLFRAM SYSTEM MODELER
eigenValueMatrixReturn real valued block diagonal matrix J of eigenvalues of matrix A (A=V*J*Vinv) |
SystemModel["Modelica.Math.Matrices.eigenValueMatrix"]
This information is part of the Modelica Standard Library maintained by the Modelica Association.
Matrices.eigenValueMatrix(eigenvalues);
The function call returns a block diagonal matrix J
from the two-column matrix eigenvalues
(computed by function
Matrices.eigenValues).
Matrix eigenvalues
must have the real part of the
eigenvalues in the first column and the imaginary part in the
second column. If an eigenvalue i has a vanishing imaginary
part, then J[i,i] = eigenvalues[i,1], i.e., the diagonal
element of J is the real eigenvalue.
Otherwise, eigenvalue i and conjugate complex eigenvalue i+1
are used to construct a 2 by 2 diagonal block of J:
J[i , i] := eigenvalues[i,1]; J[i , i+1] := eigenvalues[i,2]; J[i+1, i] := eigenvalues[i+1,2]; J[i+1, i+1] := eigenvalues[i+1,1];
eigenValues |
Type: Real[:,2] Description: Eigen values from function eigenValues(..) (Re: first column, Im: second column) |
---|
J |
Type: Real[size(eigenValues, 1),size(eigenValues, 1)] Description: Real valued block diagonal matrix with eigen values (Re: 1x1 block, Im: 2x2 block) |
---|