WOLFRAM SYSTEM MODELER
singularValuesReturn singular values and left and right singular vectors |
SystemModel["Modelica.Math.Matrices.singularValues"]
This information is part of the Modelica Standard Library maintained by the Modelica Association.
sigma = Matrices.singularValues(A); (sigma, U, VT) = Matrices.singularValues(A);
This function computes the singular values and optionally the singular vectors of matrix A. Basically the singular value decomposition of A is computed, i.e.,
A = U Σ VT = U*Sigma*VT
where U and V are orthogonal matrices (UUT=I,
VVT=I).
Σ = [diagonal(σi), zeros(n,m-n)], if n=size(A,1) ≤
m=size(A,2)) or [diagonal(σi); zeros(n-m,m)], if n >
m=size(A,2)). Σ has the same size as matrix A with
nonnegative diagonal elements in decreasing order and with all other elements zero
(σ1 is the largest element). The function
returns the singular values σi
in vector sigma
and the orthogonal matrices in
matrices U
and VT
.
A = [1, 2, 3, 4; 3, 4, 5, -2; -1, 2, -3, 5]; (sigma, U, VT) = singularValues(A); results in: sigma = {8.33, 6.94, 2.31}; i.e. Sigma = [8.33, 0, 0, 0; 0, 6.94, 0, 0; 0, 0, 2.31, 0]
A |
Type: Real[:,:] Description: Matrix |
---|
sigma |
Type: Real[min(size(A, 1), size(A, 2))] Description: Singular values |
---|---|
U |
Default Value: identity(size(A, 1)) Type: Real[size(A, 1),size(A, 1)] Description: Left orthogonal matrix |
VT |
Default Value: identity(size(A, 2)) Type: Real[size(A, 2),size(A, 2)] Description: Transposed right orthogonal matrix |