WOLFRAM SYSTEMMODELER

Medium

Medium model

Package Constants (51)

ThermoStates

Value: if enthalpyOfT then Modelica.Media.Interfaces.Choices.IndependentVariables.T else Modelica.Media.Interfaces.Choices.IndependentVariables.pT

Type: IndependentVariables

Description: Enumeration type for independent variables

mediumName

Value: "Glycol-Water 47%"

Type: String

Description: Name of the medium

substanceNames

Value: {mediumName}

Type: String[:]

Description: Names of the mixture substances. Set substanceNames={mediumName} if only one substance.

extraPropertiesNames

Value: fill("", 0)

Type: String[:]

Description: Names of the additional (extra) transported properties. Set extraPropertiesNames=fill("",0) if unused

singleState

Value: true

Type: Boolean

Description: = true, if u and d are not a function of pressure

reducedX

Value: true

Type: Boolean

Description: = true if medium contains the equation sum(X) = 1.0; set reducedX=true if only one substance (see docu for details)

fixedX

Value: true

Type: Boolean

Description: = true if medium contains the equation X = reference_X

reference_p

Value: 1.013e5

Type: AbsolutePressure (Pa)

Description: Reference pressure of Medium: default 1 atmosphere

reference_T

Value: 298.15

Type: Temperature (K)

Description: Reference temperature of Medium: default 25 deg Celsius

reference_X

Value: fill(1 / nX, nX)

Type: MassFraction[nX] (kg/kg)

Description: Default mass fractions of medium

p_default

Value: 101325

Type: AbsolutePressure (Pa)

Description: Default value for pressure of medium (for initialization)

T_default

Value: Modelica.SIunits.Conversions.from_degC(20)

Type: Temperature (K)

Description: Default value for temperature of medium (for initialization)

h_default

Value: specificEnthalpy_pTX(p_default, T_default, X_default)

Type: SpecificEnthalpy (J/kg)

Description: Default value for specific enthalpy of medium (for initialization)

X_default

Value: reference_X

Type: MassFraction[nX] (kg/kg)

Description: Default value for mass fractions of medium (for initialization)

C_default

Value: fill(0, nC)

Type: ExtraProperty[nC]

Description: Default value for trace substances of medium (for initialization)

nS

Value: size(substanceNames, 1)

Type: Integer

Description: Number of substances

nX

Value: nS

Type: Integer

Description: Number of mass fractions

nXi

Value: if fixedX then 0 else if reducedX then nS - 1 else nS

Type: Integer

Description: Number of structurally independent mass fractions (see docu for details)

nC

Value: size(extraPropertiesNames, 1)

Type: Integer

Description: Number of extra (outside of standard mass-balance) transported properties

C_nominal

Value: 1.0e-6 * ones(nC)

Type: Real[nC]

Description: Default for the nominal values for the extra properties

enthalpyOfT

Value: true

Type: Boolean

Description: True if enthalpy is approximated as a function of T only, (p-dependence neglected)

densityOfT

Value: size(tableDensity, 1) > 1

Type: Boolean

Description: True if density is a function of temperature

T_min

Value: Cv.from_degC(-30)

Type: Temperature (K)

Description: Minimum temperature valid for medium model

T_max

Value: Cv.from_degC(100)

Type: Temperature (K)

Description: Maximum temperature valid for medium model

T0

Value: 273.15

Type: Temperature (K)

Description: Reference Temperature

h0

Value: 0

Type: SpecificEnthalpy (J/kg)

Description: Reference enthalpy at T0, reference_p

s0

Value: 0

Type: SpecificEntropy (J/(kg·K))

Description: Reference entropy at T0, reference_p

MM_const

Value: 0.1

Type: MolarMass (kg/mol)

Description: Molar mass

npol

Value: 2

Type: Integer

Description: Degree of polynomial used for fitting

npolDensity

Value: npol

Type: Integer

Description: Degree of polynomial used for fitting rho(T)

npolHeatCapacity

Value: npol

Type: Integer

Description: Degree of polynomial used for fitting Cp(T)

npolViscosity

Value: npol

Type: Integer

Description: Degree of polynomial used for fitting eta(T)

npolVaporPressure

Value: npol

Type: Integer

Description: Degree of polynomial used for fitting pVap(T)

npolConductivity

Value: npol

Type: Integer

Description: Degree of polynomial used for fitting lambda(T)

neta

Value: size(tableViscosity, 1)

Type: Integer

Description: Number of data points for viscosity

tableDensity

Value: [-30, 1066; -20, 1062; -10, 1058; 0, 1054; 20, 1044; 40, 1030; 60, 1015; 80, 999; 100, 984]

Type: Real[:,2]

Description: Table for rho(T)

tableHeatCapacity

Value: [-30, 3450; -20, 3490; -10, 3520; 0, 3560; 20, 3620; 40, 3690; 60, 3760; 80, 3820; 100, 3890]

Type: Real[:,2]

Description: Table for Cp(T)

tableViscosity

Value: [-30, 0.160; -20, 0.0743; -10, 0.0317; 0, 0.0190; 20, 0.00626; 40, 0.00299; 60, 0.00162; 80, 0.00110; 100, 0.00081]

Type: Real[:,2]

Description: Table for eta(T)

tableVaporPressure

Value: [0, 500; 20, 1.9e3; 40, 5.3e3; 60, 16e3; 80, 37e3; 100, 80e3]

Type: Real[:,2]

Description: Table for pVap(T)

tableConductivity

Value: [-30, 0.397; -20, 0.396; -10, 0.395; 0, 0.395; 20, 0.394; 40, 0.393; 60, 0.392; 80, 0.391; 100, 0.390]

Type: Real[:,2]

Description: Table for lambda(T)

TinK

Value: false

Type: Boolean

Description: True if T[K],Kelvin used for table temperatures

hasDensity

Value: not size(tableDensity, 1) == 0

Type: Boolean

Description: True if table tableDensity is present

hasHeatCapacity

Value: not size(tableHeatCapacity, 1) == 0

Type: Boolean

Description: True if table tableHeatCapacity is present

hasViscosity

Value: not size(tableViscosity, 1) == 0

Type: Boolean

Description: True if table tableViscosity is present

hasVaporPressure

Value: not size(tableVaporPressure, 1) == 0

Type: Boolean

Description: True if table tableVaporPressure is present

invTK

Value: if size(tableViscosity, 1) > 0 then if TinK then 1 ./ tableViscosity[:, 1] else 1 ./ Cv.from_degC(tableViscosity[:, 1]) else fill(0, neta)

Type: Real[neta]

poly_rho

Value: if hasDensity then Poly.fitting(tableDensity[:, 1], tableDensity[:, 2], npolDensity) else zeros(npolDensity + 1)

Type: Real[:]

poly_Cp

Value: if hasHeatCapacity then Poly.fitting(tableHeatCapacity[:, 1], tableHeatCapacity[:, 2], npolHeatCapacity) else zeros(npolHeatCapacity + 1)

Type: Real[:]

poly_eta

Value: if hasViscosity then Poly.fitting(invTK, Math.log(tableViscosity[:, 2]), npolViscosity) else zeros(npolViscosity + 1)

Type: Real[:]

poly_pVap

Value: if hasVaporPressure then Poly.fitting(tableVaporPressure[:, 1], tableVaporPressure[:, 2], npolVaporPressure) else zeros(npolVaporPressure + 1)

Type: Real[:]

poly_lam

Value: if size(tableConductivity, 1) > 0 then Poly.fitting(tableConductivity[:, 1], tableConductivity[:, 2], npolConductivity) else zeros(npolConductivity + 1)

Type: Real[:]

Wolfram Language

In[1]:=
SystemModel["Modelica.Media.Examples.SolveOneNonlinearEquation.InverseIncompressible_sh_T.Medium"]
Out[1]:=