EccentricityCentrality

EccentricityCentrality[g]
gives a list of eccentricity centralities for the vertices in the graph g.

DetailsDetails

  • EccentricityCentrality will give high centralities to vertices that are at short maximum distances to every other reachable vertex.
  • EccentricityCentrality for a graph g is given by , where is the maximum distance from vertex to all other vertices connected to .
  • The eccentricity centrality for isolated vertices is taken to be zero.
  • EccentricityCentrality works with undirected graphs, directed graphs, weighted graphs, multigraphs, and mixed graphs.

Background
Background

  • EccentricityCentrality returns a list of non-negative machine numbers ("eccentricity centralities") that approximate particular centrality measures of the vertices of a graph. Eccentricity centrality is a measure of the centrality of a node in a network based on having a small maximum distance from a node to every other reachable node (i.e. the graph eccentricities). This measure has found applications in social networks, transportation, biology, and the social sciences.
  • If is the maximum distance from vertex to all other vertices connected to , then the eccentricity centralities are given by . The eccentricity centrality for isolated vertices is taken to be zero. Eccentricity centralities lie between 0 and 1 inclusive.
  • The eccentricity centrality of a vertex is the reciprocal of its VertexEccentricity. The full distance matrix of a graph can be computed using GraphDistanceMatrix.

ExamplesExamplesopen allclose all

Basic Examples  (2)Basic Examples  (2)

Compute eccentricity centralities:

In[1]:=
Click for copyable input
In[2]:=
Click for copyable input
Out[2]=

Highlight:

In[3]:=
Click for copyable input
Out[3]=

Rank vertices. Highest-ranked vertices are at short distances to every other reachable vertex:

In[1]:=
Click for copyable input
In[2]:=
Click for copyable input
Out[2]=
Introduced in 2012
(9.0)
| Updated in 2014
(10.0)