gives True if m is explicitly symmetric, and False otherwise.

Details and Options

  • A matrix m is symmetric if m==Transpose[m].
  • SymmetricMatrixQ works for symbolic as well as numerical matrices.
  • The following options can be given:
  • SameTestAutomaticfunction to test equality of expressions
    ToleranceAutomatictolerance for approximate numbers
  • For exact and symbolic matrices, the option SameTest->f indicates that two entries mij and mkl are taken to be equal if f[mij,mkl] gives True.
  • For approximate matrices, the option Tolerance->t can be used to indicate that all entries Abs[mij]t are taken to be zero.
  • For matrix entries Abs[mij]>t, equality comparison is done except for the last bits, where is $MachineEpsilon for MachinePrecision matrices and for matrices of Precision .


open allclose all

Basic Examples  (1)

Test if a matrix is explicitly symmetric:

Click for copyable input
Click for copyable input

Scope  (5)

Options  (2)

Applications  (12)

Properties & Relations  (8)

Possible Issues  (1)

Neat Examples  (1)

See Also

AntisymmetricMatrixQ  HermitianMatrixQ  AntihermitianMatrixQ  PositiveSemidefiniteMatrixQ  Transpose  SymmetrizedArray  Symmetrize

Introduced in 2008
| Updated in 2014