WOLFRAM

GARCHProcess
Copy to clipboard.
GARCHProcess

Copy to clipboard.
GARCHProcess[κ,{α1,,αq},{β1,,βp}]

represents a generalized autoregressive conditionally heteroscedastic process of orders p and q, driven by a standard white noise.

Copy to clipboard.
GARCHProcess[κ,{α1,,αq},{β1,,βp},init]

represents a GARCH process with initial data init.

Details

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Simulate a GARCHProcess:

Out[1]=1
Out[2]=2
Out[3]=3

Unconditional mean and variance of a weakly stationary process:

Out[1]=1
Out[2]=2

With fixed initial values:

Out[3]=3
Out[4]=4

The observations are uncorrelated but dependent:

Out[2]=2

The squared values of the data are correlated:

Out[4]=4

Scope  (13)Survey of the scope of standard use cases

Basic Uses  (8)

Simulate an ensemble of paths:

Out[1]=1
Out[2]=2

Simulate with arbitrary precision:

Out[1]=1

Simulate a weakly stationary process with given initial values:

Out[4]=4

A non-weakly stationary process:

Out[7]=7

An integrated GARCHProcess:

Out[2]=2

Explosive GARCHProcess:

Out[2]=2

Such a process is not second-order stationary:

Out[3]=3

Conditions for a GARCHProcess to be covariance-stationary:

Out[4]=4

Region of second-order stationarity for a GARCHProcess[1,1]:

Out[1]=1
Out[2]=2

Estimate a GARCHProcess:

Out[2]=2
Out[3]=3

Use maximum conditional likelihood:

Out[4]=4

Forecast:

Find the forecast 20 steps ahead:

Out[3]=3

Find the mean squared errors of the forecast:

Out[4]=4

The forecasted states are equal to zero, hence the forecasted standard deviation bounds are:

Plot the values with mean squared errors:

Out[6]=6

Process Slice Properties  (5)

Moments of a weakly stationary GARCH of orders :

Out[2]=2
Out[3]=3

Moment of a GARCH process with given initial conditions:

Out[1]=1
Out[2]=2
Out[3]=3

Skewness:

Out[1]=1
Out[2]=2

Kurtosis:

Out[3]=3

Region where kurtosis is defined:

Out[4]=4

Simulate slice distribution:

Probability density function of the sample:

Out[2]=2

Use the Monte Carlo method to calculate NProbability for slice distribution:

Out[2]=2

Calculate NExpectation:

Out[3]=3

Compare to the second Moment:

Out[4]=4

Properties & Relations  (3)Properties of the function, and connections to other functions

The values of a GARCHProcess are uncorrelated:

Corresponding ARMAProcess:

Out[1]=1

For a process with given initial values:

Out[2]=2

Squared values of a GARCHProcess follow an ARMAProcess:

CorrelationFunction and PartialCorrelationFunction of squared values:

Out[3]=3

The corresponding ARMA process:

Out[4]=4

CorrelationFunction and PartialCorrelationFunction of the ARMA process:

Out[5]=5
Wolfram Research (2014), GARCHProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/GARCHProcess.html.
Copy to clipboard.
Wolfram Research (2014), GARCHProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/GARCHProcess.html.

Text

Wolfram Research (2014), GARCHProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/GARCHProcess.html.

Copy to clipboard.
Wolfram Research (2014), GARCHProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/GARCHProcess.html.

CMS

Wolfram Language. 2014. "GARCHProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/GARCHProcess.html.

Copy to clipboard.
Wolfram Language. 2014. "GARCHProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/GARCHProcess.html.

APA

Wolfram Language. (2014). GARCHProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GARCHProcess.html

Copy to clipboard.
Wolfram Language. (2014). GARCHProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GARCHProcess.html

BibTeX

@misc{reference.wolfram_2025_garchprocess, author="Wolfram Research", title="{GARCHProcess}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/GARCHProcess.html}", note=[Accessed: 02-April-2025 ]}

Copy to clipboard.
@misc{reference.wolfram_2025_garchprocess, author="Wolfram Research", title="{GARCHProcess}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/GARCHProcess.html}", note=[Accessed: 02-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_garchprocess, organization={Wolfram Research}, title={GARCHProcess}, year={2014}, url={https://reference.wolfram.com/language/ref/GARCHProcess.html}, note=[Accessed: 02-April-2025 ]}

Copy to clipboard.
@online{reference.wolfram_2025_garchprocess, organization={Wolfram Research}, title={GARCHProcess}, year={2014}, url={https://reference.wolfram.com/language/ref/GARCHProcess.html}, note=[Accessed: 02-April-2025 ]}