InverseBetaRegularized[s,a,b]
gives the inverse of the regularized incomplete beta function.
 
     
   InverseBetaRegularized
InverseBetaRegularized[s,a,b]
gives the inverse of the regularized incomplete beta function.
Details
 
   - Mathematical function, suitable for both symbolic and numerical manipulation.
- With the regularized incomplete beta function defined by  , InverseBetaRegularized[s,a,b] is the solution for z in , InverseBetaRegularized[s,a,b] is the solution for z in . .
- InverseBetaRegularized[z0,s,a,b] gives the inverse of BetaRegularized[z0,z,a,b].
- Note that the arguments of InverseBetaRegularized are arranged differently than in InverseGammaRegularized.
- For certain special arguments, InverseBetaRegularized automatically evaluates to exact values.
- InverseBetaRegularized can be evaluated to arbitrary numerical precision.
- InverseBetaRegularized automatically threads over lists. »
Examples
open all close allScope (17)
Numerical Evaluation (4)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute the elementwise values of an array using automatic threading:
Or compute the matrix InverseBetaRegularized function using MatrixFunction:
Specific Values (4)
Values of InverseBetaRegularized at fixed points:
Find a value of z for which the InverseBetaRegularized[z,1,2]=0.5:
TraditionalForm formatting:
Visualization (2)
Plot the InverseBetaRegularized function for different values of parameter a:
Plot the InverseBetaRegularized function for different values of parameter b:
Function Properties (5)
Generalizations & Extensions (2)
Applications (2)
Properties & Relations (2)
Possible Issues (2)
InverseBetaRegularized evaluates numerically only for  :
:
In TraditionalForm,  is not automatically interpreted as an inverse regularized beta function:
 is not automatically interpreted as an inverse regularized beta function: 
Tech Notes
Related Guides
Related Links
History
Introduced in 1996 (3.0)
Text
Wolfram Research (1996), InverseBetaRegularized, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseBetaRegularized.html.
CMS
Wolfram Language. 1996. "InverseBetaRegularized." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseBetaRegularized.html.
APA
Wolfram Language. (1996). InverseBetaRegularized. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseBetaRegularized.html
BibTeX
@misc{reference.wolfram_2025_inversebetaregularized, author="Wolfram Research", title="{InverseBetaRegularized}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/InverseBetaRegularized.html}", note=[Accessed: 30-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_inversebetaregularized, organization={Wolfram Research}, title={InverseBetaRegularized}, year={1996}, url={https://reference.wolfram.com/language/ref/InverseBetaRegularized.html}, note=[Accessed: 30-October-2025]}
![TemplateBox[{x, 3, 2}, InverseBetaRegularized] TemplateBox[{x, 3, 2}, InverseBetaRegularized]](Files/InverseBetaRegularized.en/3.png)

![TemplateBox[{x, 3, 2}, InverseBetaRegularized] TemplateBox[{x, 3, 2}, InverseBetaRegularized]](Files/InverseBetaRegularized.en/5.png)
![TemplateBox[{x, 3, 2}, InverseBetaRegularized] TemplateBox[{x, 3, 2}, InverseBetaRegularized]](Files/InverseBetaRegularized.en/6.png)
![TemplateBox[{x, 3, 2}, InverseBetaRegularized] TemplateBox[{x, 3, 2}, InverseBetaRegularized]](Files/InverseBetaRegularized.en/7.png)
![TemplateBox[{x, 3, 2}, InverseBetaRegularized] TemplateBox[{x, 3, 2}, InverseBetaRegularized]](Files/InverseBetaRegularized.en/8.png)

