MarcumQ
✖
MarcumQ
Details

- Mathematical function, suitable for both symbolic and numerical evaluation.
for real positive
,
, and
.
- MarcumQ[m,a,b] is an entire function of both a and b with no branch cut discontinuities.
- For certain special arguments, MarcumQ automatically evaluates to exact values.
- MarcumQ can be evaluated to arbitrary numerical precision.
- MarcumQ automatically threads over lists. »
Examples
open allclose allBasic Examples (4)Summary of the most common use cases

https://wolfram.com/xid/0h2i7z5x0z-g0m

Plot over a subset of the reals:

https://wolfram.com/xid/0h2i7z5x0z-fnnbsr

Plot over a subset of the complexes:

https://wolfram.com/xid/0h2i7z5x0z-kiedlx

Series expansion at the origin:

https://wolfram.com/xid/0h2i7z5x0z-fdkkja

Scope (29)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0h2i7z5x0z-l274ju


https://wolfram.com/xid/0h2i7z5x0z-cksbl4


https://wolfram.com/xid/0h2i7z5x0z-b0wt9

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0h2i7z5x0z-y7k4a


https://wolfram.com/xid/0h2i7z5x0z-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0h2i7z5x0z-di5gcr


https://wolfram.com/xid/0h2i7z5x0z-bq2c6r

Compute the elementwise values of an array using automatic threading:

https://wolfram.com/xid/0h2i7z5x0z-thgd2

Or compute the matrix MarcumQ function using MatrixFunction:

https://wolfram.com/xid/0h2i7z5x0z-o5jpo

Compute average-case statistical intervals using Around:

https://wolfram.com/xid/0h2i7z5x0z-cw18bq

Specific Values (3)
MarcumQ for symbolic a:

https://wolfram.com/xid/0h2i7z5x0z-fc9m8o

Find the maximum of MarcumQ[1,2,x]:

https://wolfram.com/xid/0h2i7z5x0z-otdu3


https://wolfram.com/xid/0h2i7z5x0z-he41t

The four-argument form gives the difference:

https://wolfram.com/xid/0h2i7z5x0z-et6ag

Visualization (2)
Plot the MarcumQ function for various parameters:

https://wolfram.com/xid/0h2i7z5x0z-ecj8m7


https://wolfram.com/xid/0h2i7z5x0z-dbvuei


https://wolfram.com/xid/0h2i7z5x0z-bw703c

Function Properties (9)
Real domain of MarcumQ:

https://wolfram.com/xid/0h2i7z5x0z-1o8ood


https://wolfram.com/xid/0h2i7z5x0z-og19uc

Complex domain of MarcumQ:

https://wolfram.com/xid/0h2i7z5x0z-nx4i6o


https://wolfram.com/xid/0h2i7z5x0z-h4l0au

Approximate function range of :

https://wolfram.com/xid/0h2i7z5x0z-evf2yr


https://wolfram.com/xid/0h2i7z5x0z-ewxrep

is an analytic function of
and
for positive integer
:

https://wolfram.com/xid/0h2i7z5x0z-hcj60t

It has no singularities or discontinuities:

https://wolfram.com/xid/0h2i7z5x0z-mdtl3h


https://wolfram.com/xid/0h2i7z5x0z-6f9j84

is neither non-increasing nor non-decreasing:

https://wolfram.com/xid/0h2i7z5x0z-nlz7s


https://wolfram.com/xid/0h2i7z5x0z-poz8g


https://wolfram.com/xid/0h2i7z5x0z-ctca0g


https://wolfram.com/xid/0h2i7z5x0z-84dui

is neither convex nor concave:

https://wolfram.com/xid/0h2i7z5x0z-8kku21

TraditionalForm formatting:

https://wolfram.com/xid/0h2i7z5x0z-f8u1hh


https://wolfram.com/xid/0h2i7z5x0z-cowes2

Differentiation (2)
First derivative with respect to a:

https://wolfram.com/xid/0h2i7z5x0z-krpoah

First derivative with respect to b:

https://wolfram.com/xid/0h2i7z5x0z-fmn0ob

Higher derivatives with respect to a:

https://wolfram.com/xid/0h2i7z5x0z-z33jv

Plot the higher derivatives with respect to a when b=3 and m=1:

https://wolfram.com/xid/0h2i7z5x0z-fxwmfc

Series Expansions (2)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0h2i7z5x0z-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/0h2i7z5x0z-binhar

Taylor expansion at a generic point:

https://wolfram.com/xid/0h2i7z5x0z-jwxla7

Function Identities and Simplifications (5)
can be expressed in terms of simpler functions whenever
is a half-integer:

https://wolfram.com/xid/0h2i7z5x0z-cwu87e

For integer and
,
can be expressed in terms of modified Bessel functions:

https://wolfram.com/xid/0h2i7z5x0z-dqk54l

For arbitrary and
,
can be expressed in terms of hypergeometric functions:

https://wolfram.com/xid/0h2i7z5x0z-bsm8sb

Ordinary differential equation with respect to satisfied by
:

https://wolfram.com/xid/0h2i7z5x0z-h6kqn1

Ordinary differential equation with respect to satisfied by
:

https://wolfram.com/xid/0h2i7z5x0z-fvoxy4

Recurrence relation with respect to satisfied by
:

https://wolfram.com/xid/0h2i7z5x0z-fmahbm

Applications (2)Sample problems that can be solved with this function
The amplitude of a signal is modeled by RiceDistribution. Find the probability that the amplitude will exceed its mean value:

https://wolfram.com/xid/0h2i7z5x0z-5vdxx

https://wolfram.com/xid/0h2i7z5x0z-i38xh0


https://wolfram.com/xid/0h2i7z5x0z-moh6t2

Compare the value of the MarcumQ function for large arguments to its asymptotic formula:

https://wolfram.com/xid/0h2i7z5x0z-cspm26

Construct an approximation using the central limit theorem:

https://wolfram.com/xid/0h2i7z5x0z-cuqcyh


https://wolfram.com/xid/0h2i7z5x0z-led3f6

Properties & Relations (3)Properties of the function, and connections to other functions
MarcumQ can be used to compute the SurvivalFunction of SkellamDistribution:

https://wolfram.com/xid/0h2i7z5x0z-dx64ku


https://wolfram.com/xid/0h2i7z5x0z-nrgd4u

MarcumQ computes the SurvivalFunction of NoncentralChiSquareDistribution:

https://wolfram.com/xid/0h2i7z5x0z-wetzj

MarcumQ computes the SurvivalFunction of RiceDistribution:

https://wolfram.com/xid/0h2i7z5x0z-c4oou4


https://wolfram.com/xid/0h2i7z5x0z-i2x0al

Wolfram Research (2010), MarcumQ, Wolfram Language function, https://reference.wolfram.com/language/ref/MarcumQ.html.
Text
Wolfram Research (2010), MarcumQ, Wolfram Language function, https://reference.wolfram.com/language/ref/MarcumQ.html.
Wolfram Research (2010), MarcumQ, Wolfram Language function, https://reference.wolfram.com/language/ref/MarcumQ.html.
CMS
Wolfram Language. 2010. "MarcumQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MarcumQ.html.
Wolfram Language. 2010. "MarcumQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MarcumQ.html.
APA
Wolfram Language. (2010). MarcumQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MarcumQ.html
Wolfram Language. (2010). MarcumQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MarcumQ.html
BibTeX
@misc{reference.wolfram_2025_marcumq, author="Wolfram Research", title="{MarcumQ}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/MarcumQ.html}", note=[Accessed: 27-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_marcumq, organization={Wolfram Research}, title={MarcumQ}, year={2010}, url={https://reference.wolfram.com/language/ref/MarcumQ.html}, note=[Accessed: 27-April-2025
]}