WOLFRAM

MeijerG[{{a1,,an},{an+1,,ap}},{{b1,,bm},{bm+1,,bq}},z]

is the Meijer G-function .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • The generalized form MeijerG[alist,blist,z,r] is defined for real r by , where in the default case .
  • In many special cases, MeijerG is automatically converted to other functions.

Examples

open allclose all

Basic Examples  (6)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Many special functions are special cases of MeijerG:

Out[1]=1
Out[2]=2

Plot over a subset of the reals:

Out[1]=1

Plot over a subset of the complexes:

Out[1]=1

Series expansion at the origin:

Out[1]=1

Series expansion at Infinity:

Out[1]=1

Scope  (35)Survey of the scope of standard use cases

Numerical Evaluation  (7)

Evaluate numerically:

Out[1]=1
Out[2]=2

Evaluate to high precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[2]=2

Complex number input:

Out[1]=1

Evaluate efficiently at high precision:

Out[1]=1
Out[2]=2

MeijerG threads elementwise over lists in its third argument:

Out[1]=1

MeijerG threads elementwise over sparse and structured arrays in its third argument:

Out[2]=2
Out[3]=3

Compute average case statistical intervals using Around:

Out[1]=1

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix MeijerG function using MatrixFunction:

Out[2]=2

Specific Values  (5)

Values at fixed points:

Out[1]=1
Out[2]=2

Evaluate symbolically:

Out[1]=1
Out[2]=2

Values at zero:

Out[1]=1
Out[2]=2
Out[3]=3

For simple parameters, MeijerG evaluates to simpler functions:

Out[1]=1
Out[2]=2

Find a positive minimum of MeijerG[{{},{}},{{1/2},{3/2}},x]:

Out[1]=1
Out[2]=2

Visualization  (2)

Plot the MeijerG function for various parameters:

Out[1]=1

Plot the real part of MeijerG[{{1},{}},{{1/2,1,3/2},{}},z ]:

Out[1]=1

Plot the imaginary part of MeijerG[{{1},{}},{{1/2,1,3/2},{}},z ]:

Out[2]=2

Function Properties  (9)

Real and complex domains of :

Out[2]=2
Out[1]=1

MeijerG threads elementwise over lists in the last argument:

Out[1]=1

is not an analytic function:

Out[1]=1

Has both singularities and discontinuities:

Out[2]=2
Out[3]=3

is nonincreasing over its real domain:

Out[1]=1

is injective:

Out[1]=1
Out[2]=2

is not surjective:

Out[1]=1
Out[2]=2

is negative over its real domain:

Out[1]=1

is convex over its real domain:

Out[1]=1

TraditionalForm formatting:

Differentiation  (3)

First derivative with respect to z:

Out[1]=1

Higher derivatives with respect to z:

Out[1]=1

Plot the higher derivatives with respect to z when b=3 and c=2:

Out[2]=2

Formula for the ^(th) derivative with respect to z:

Out[1]=1

Integration  (3)

Compute the indefinite integral using Integrate:

Out[1]=1

Verify the antiderivative:

Out[2]=2

Definite integral:

Out[1]=1

More integrals:

Out[1]=1
Out[2]=2

Series Expansions  (6)

Find the Taylor expansion using Series:

Out[1]=1

Plots of the first three approximations around :

Out[1]=1

General term in the series expansion using SeriesCoefficient:

Out[1]=1

Find the series expansion at Infinity:

Out[1]=1

Series expansion in a logarithmic case:

Out[1]=1

Taylor expansion at a generic point:

Out[1]=1

Generalizations & Extensions  (1)Generalized and extended use cases

Evaluate a generalized Meijer G function:

Out[1]=1

The analogous ordinary Meijer G function has a different branch cut structure:

Out[2]=2
Out[3]=3
Out[4]=4

Applications  (5)Sample problems that can be solved with this function

Define the product of independent random variables drawn from BetaDistribution:

Out[6]=6

The PDF of the distribution is defined in terms of MeijerG:

Out[9]=9

Use FunctionExpand to express it in terms of simpler functions:

Out[10]=10

Compare the plot of the PDF to the Histogram of a random sample:

Out[12]=12

Solve a differential equation:

Out[1]=1

MeijerG gives a logarithmic part:

Out[2]=2

Integrate can return answers involving MeijerG:

Out[1]=1
Out[2]=2

Solve a third-order singular ODE in terms of the HypergeometricPFQ and MeijerG functions:

Out[1]=1

Verify that the components of the general solution for an ODE are linearly independent:

Out[2]=2

A formula for solutions to the trinomial equation :

First root of the quintic :

Out[3]=3

Check the solution:

Out[4]=4

Properties & Relations  (1)Properties of the function, and connections to other functions

Use FunctionExpand to expand MeijerG into simpler functions:

Out[4]=4
Out[5]=5

Possible Issues  (3)Common pitfalls and unexpected behavior

For some choices of parameters, MeijerG is not defined:

Out[1]=1

is a singular point of MeijerG functions with :

Out[1]=1
Out[2]=2
Out[3]=3

MeijerG is a piecewise analytic function for :

Out[1]=1
Out[2]=2

Neat Examples  (2)Surprising or curious use cases

Solve a SIAM 100digit challenge problem: find to maximize:

Out[1]=1

Plot the integral:

Out[2]=2

Numerically find the maximum:

Out[3]=3

Generate many elementary and special functions as special cases of MeijerG:

Wolfram Research (1996), MeijerG, Wolfram Language function, https://reference.wolfram.com/language/ref/MeijerG.html.
Wolfram Research (1996), MeijerG, Wolfram Language function, https://reference.wolfram.com/language/ref/MeijerG.html.

Text

Wolfram Research (1996), MeijerG, Wolfram Language function, https://reference.wolfram.com/language/ref/MeijerG.html.

Wolfram Research (1996), MeijerG, Wolfram Language function, https://reference.wolfram.com/language/ref/MeijerG.html.

CMS

Wolfram Language. 1996. "MeijerG." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MeijerG.html.

Wolfram Language. 1996. "MeijerG." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MeijerG.html.

APA

Wolfram Language. (1996). MeijerG. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MeijerG.html

Wolfram Language. (1996). MeijerG. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MeijerG.html

BibTeX

@misc{reference.wolfram_2025_meijerg, author="Wolfram Research", title="{MeijerG}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/MeijerG.html}", note=[Accessed: 28-March-2025 ]}

@misc{reference.wolfram_2025_meijerg, author="Wolfram Research", title="{MeijerG}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/MeijerG.html}", note=[Accessed: 28-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_meijerg, organization={Wolfram Research}, title={MeijerG}, year={1996}, url={https://reference.wolfram.com/language/ref/MeijerG.html}, note=[Accessed: 28-March-2025 ]}

@online{reference.wolfram_2025_meijerg, organization={Wolfram Research}, title={MeijerG}, year={1996}, url={https://reference.wolfram.com/language/ref/MeijerG.html}, note=[Accessed: 28-March-2025 ]}