MeijerG
✖
MeijerG
Examples
open allclose allBasic Examples (6)Summary of the most common use cases

https://wolfram.com/xid/0ftsl9u-hd0tyg

Many special functions are special cases of MeijerG:

https://wolfram.com/xid/0ftsl9u-syxz3e


https://wolfram.com/xid/0ftsl9u-exgo4e

Plot over a subset of the reals:

https://wolfram.com/xid/0ftsl9u-m51

Plot over a subset of the complexes:

https://wolfram.com/xid/0ftsl9u-b5yjf1

Series expansion at the origin:

https://wolfram.com/xid/0ftsl9u-f65ufv

Series expansion at Infinity:

https://wolfram.com/xid/0ftsl9u-fgrnr3

Scope (35)Survey of the scope of standard use cases
Numerical Evaluation (7)

https://wolfram.com/xid/0ftsl9u-l274ju


https://wolfram.com/xid/0ftsl9u-cksbl4


https://wolfram.com/xid/0ftsl9u-b0wt9

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0ftsl9u-y7k4a


https://wolfram.com/xid/0ftsl9u-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0ftsl9u-di5gcr


https://wolfram.com/xid/0ftsl9u-bq2c6r

MeijerG threads elementwise over lists in its third argument:

https://wolfram.com/xid/0ftsl9u-bhng5j

MeijerG threads elementwise over sparse and structured arrays in its third argument:

https://wolfram.com/xid/0ftsl9u-izuq9r


https://wolfram.com/xid/0ftsl9u-bvrzed

Compute average case statistical intervals using Around:

https://wolfram.com/xid/0ftsl9u-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0ftsl9u-thgd2

Or compute the matrix MeijerG function using MatrixFunction:

https://wolfram.com/xid/0ftsl9u-o5jpo

Specific Values (5)

https://wolfram.com/xid/0ftsl9u-o7spmt


https://wolfram.com/xid/0ftsl9u-bjvvy9


https://wolfram.com/xid/0ftsl9u-jql9vr


https://wolfram.com/xid/0ftsl9u-h2sg3


https://wolfram.com/xid/0ftsl9u-jevg27


https://wolfram.com/xid/0ftsl9u-bqgyg7


https://wolfram.com/xid/0ftsl9u-6ak4h

For simple parameters, MeijerG evaluates to simpler functions:

https://wolfram.com/xid/0ftsl9u-ih9u38


https://wolfram.com/xid/0ftsl9u-batwwb

Find a positive minimum of MeijerG[{{},{}},{{1/2},{3/2}},x]:

https://wolfram.com/xid/0ftsl9u-f2hrld


https://wolfram.com/xid/0ftsl9u-hcwjf6

Visualization (2)
Plot the MeijerG function for various parameters:

https://wolfram.com/xid/0ftsl9u-c0x9p4

Plot the real part of MeijerG[{{1},{}},{{1/2,1,3/2},{}},z ]:

https://wolfram.com/xid/0ftsl9u-kgd8nu

Plot the imaginary part of MeijerG[{{1},{}},{{1/2,1,3/2},{}},z ]:

https://wolfram.com/xid/0ftsl9u-oqui6b

Function Properties (9)

https://wolfram.com/xid/0ftsl9u-w67qyz


https://wolfram.com/xid/0ftsl9u-gkyjuv

MeijerG threads elementwise over lists in the last argument:

https://wolfram.com/xid/0ftsl9u-muz25u


https://wolfram.com/xid/0ftsl9u-h5x4l2

Has both singularities and discontinuities:

https://wolfram.com/xid/0ftsl9u-mdtl3h


https://wolfram.com/xid/0ftsl9u-mn5jws

is nonincreasing over its real domain:

https://wolfram.com/xid/0ftsl9u-nlz7s


https://wolfram.com/xid/0ftsl9u-poz8g


https://wolfram.com/xid/0ftsl9u-ctca0g


https://wolfram.com/xid/0ftsl9u-cxk3a6


https://wolfram.com/xid/0ftsl9u-frlnsr

is negative over its real domain:

https://wolfram.com/xid/0ftsl9u-84dui

is convex over its real domain:

https://wolfram.com/xid/0ftsl9u-8kku21

TraditionalForm formatting:

https://wolfram.com/xid/0ftsl9u-d5dvhu


https://wolfram.com/xid/0ftsl9u-kwtb0

Differentiation (3)
First derivative with respect to z:

https://wolfram.com/xid/0ftsl9u-krpoah

Higher derivatives with respect to z:

https://wolfram.com/xid/0ftsl9u-z33jv

Plot the higher derivatives with respect to z when b=3 and c=2:

https://wolfram.com/xid/0ftsl9u-fxwmfc

Formula for the derivative with respect to z:

https://wolfram.com/xid/0ftsl9u-cb5zgj

Integration (3)
Compute the indefinite integral using Integrate:

https://wolfram.com/xid/0ftsl9u-bponid


https://wolfram.com/xid/0ftsl9u-op9yly


https://wolfram.com/xid/0ftsl9u-bfdh5d


https://wolfram.com/xid/0ftsl9u-4nbst


https://wolfram.com/xid/0ftsl9u-yncg8

Series Expansions (6)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0ftsl9u-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/0ftsl9u-binhar

General term in the series expansion using SeriesCoefficient:

https://wolfram.com/xid/0ftsl9u-dznx2j

Find the series expansion at Infinity:

https://wolfram.com/xid/0ftsl9u-syq

Series expansion in a logarithmic case:

https://wolfram.com/xid/0ftsl9u-0egdf

Taylor expansion at a generic point:

https://wolfram.com/xid/0ftsl9u-jwxla7

Generalizations & Extensions (1)Generalized and extended use cases
Evaluate a generalized Meijer G function:

https://wolfram.com/xid/0ftsl9u-ff0me5

The analogous ordinary Meijer G function has a different branch cut structure:

https://wolfram.com/xid/0ftsl9u-bbjx9x


https://wolfram.com/xid/0ftsl9u-4qjd


https://wolfram.com/xid/0ftsl9u-7ssyw

Applications (5)Sample problems that can be solved with this function
Define the product of independent random variables drawn from BetaDistribution:

https://wolfram.com/xid/0ftsl9u-hitydv

The PDF of the distribution is defined in terms of MeijerG:

https://wolfram.com/xid/0ftsl9u-hmvu4v

Use FunctionExpand to express it in terms of simpler functions:

https://wolfram.com/xid/0ftsl9u-ky14tp

Compare the plot of the PDF to the Histogram of a random sample:

https://wolfram.com/xid/0ftsl9u-ehgwjq

https://wolfram.com/xid/0ftsl9u-ott6k

Solve a differential equation:

https://wolfram.com/xid/0ftsl9u-g34byp

MeijerG gives a logarithmic part:

https://wolfram.com/xid/0ftsl9u-j7c1s1

Integrate can return answers involving MeijerG:

https://wolfram.com/xid/0ftsl9u-79bruc


https://wolfram.com/xid/0ftsl9u-eu5lw7

Solve a third-order singular ODE in terms of the HypergeometricPFQ and MeijerG functions:

https://wolfram.com/xid/0ftsl9u-jvopp

Verify that the components of the general solution for an ODE are linearly independent:

https://wolfram.com/xid/0ftsl9u-e5ez2u

A formula for solutions to the trinomial equation :

https://wolfram.com/xid/0ftsl9u-d8ja4

https://wolfram.com/xid/0ftsl9u-kvcatk


https://wolfram.com/xid/0ftsl9u-isknwz


https://wolfram.com/xid/0ftsl9u-5wjl0

Properties & Relations (1)Properties of the function, and connections to other functions
Use FunctionExpand to expand MeijerG into simpler functions:

https://wolfram.com/xid/0ftsl9u-2pfvc


https://wolfram.com/xid/0ftsl9u-csyjt5

Possible Issues (3)Common pitfalls and unexpected behavior
For some choices of parameters, MeijerG is not defined:

https://wolfram.com/xid/0ftsl9u-tx106


is a singular point of MeijerG functions with
:

https://wolfram.com/xid/0ftsl9u-goaj2u


https://wolfram.com/xid/0ftsl9u-e6gldl


https://wolfram.com/xid/0ftsl9u-c79hns

MeijerG is a piecewise analytic function for :

https://wolfram.com/xid/0ftsl9u-dtuz8f


https://wolfram.com/xid/0ftsl9u-gq3uxz

Neat Examples (2)Surprising or curious use cases
Solve a SIAM 100‐digit challenge problem: find to maximize:

https://wolfram.com/xid/0ftsl9u-ghzx25


https://wolfram.com/xid/0ftsl9u-lfb7tc


https://wolfram.com/xid/0ftsl9u-k67mu

Generate many elementary and special functions as special cases of MeijerG:

https://wolfram.com/xid/0ftsl9u-fclgt

Wolfram Research (1996), MeijerG, Wolfram Language function, https://reference.wolfram.com/language/ref/MeijerG.html.
Text
Wolfram Research (1996), MeijerG, Wolfram Language function, https://reference.wolfram.com/language/ref/MeijerG.html.
Wolfram Research (1996), MeijerG, Wolfram Language function, https://reference.wolfram.com/language/ref/MeijerG.html.
CMS
Wolfram Language. 1996. "MeijerG." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MeijerG.html.
Wolfram Language. 1996. "MeijerG." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MeijerG.html.
APA
Wolfram Language. (1996). MeijerG. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MeijerG.html
Wolfram Language. (1996). MeijerG. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MeijerG.html
BibTeX
@misc{reference.wolfram_2025_meijerg, author="Wolfram Research", title="{MeijerG}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/MeijerG.html}", note=[Accessed: 28-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_meijerg, organization={Wolfram Research}, title={MeijerG}, year={1996}, url={https://reference.wolfram.com/language/ref/MeijerG.html}, note=[Accessed: 28-March-2025
]}