SingularValuePlot

SingularValuePlot[lsys]

generates a plot of the singular values of the transfer function for the system lsys.

SingularValuePlot[lsys,{ωmin,ωmax}]

plots for the frequency range ωmin to ωmax.

SingularValuePlot[expr,{ω,ωmin,ωmax}]

plots expr using the variable ω.

Details and Options

Examples

open allclose all

Basic Examples  (3)

The singular value plot of a transfer-function model:

The transfer function can be specified as a matrix:

The singular value plot of a state-space model:

Scope  (7)

SingularValuePlot shows all the singular values:

A one-input, two-output system:

A two-input, three-output system:

A discrete-time system:

A discrete-time system specified as an expression:

Explicit frequency range:

Specify a system using its sinusoidal transfer function:

Generalizations & Extensions  (1)

A singular value plot can be obtained from a transfer-function model or directly from its expression:

Options  (16)

CoordinatesToolOptions  (3)

Display coordinates by selecting the graphic and typing a period (.):

If the frequency is in radians/second, the corresponding values in hertz can be displayed as follows:

Display coordinates of frequency and the singular values in hertz and absolute values, respectively:

GridLines  (3)

Show grid lines:

Show only the frequency grid lines:

Show specific grid lines:

GridLinesStyle  (1)

Specify the grid line style:

PlotLegends  (4)

Use automatic legends for multiple singular values:

Use a list of text for legends:

Use LineLegend to add a overall legend label:

Place the legend above the plot:

PlotTheme  (1)

Use a theme with simple ticks and grid lines in a bright color scheme:

Change the color scheme:

SamplingPeriod  (2)

Systems specified as an expression are assumed to be in the continuous-time domain:

A discrete-time system:

ScalingFunctions  (2)

Show frequency in the linear scale:

Show the absolute values of the singular values:

Applications  (1)

A plot with frequency in rotations/minute, when the Laplace variable is in radians/second:

Properties & Relations  (1)

The singular value plot and the Bode magnitude plot are the same for SISO systems:

Wolfram Research (2010), SingularValuePlot, Wolfram Language function, https://reference.wolfram.com/language/ref/SingularValuePlot.html (updated 2014).

Text

Wolfram Research (2010), SingularValuePlot, Wolfram Language function, https://reference.wolfram.com/language/ref/SingularValuePlot.html (updated 2014).

CMS

Wolfram Language. 2010. "SingularValuePlot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2014. https://reference.wolfram.com/language/ref/SingularValuePlot.html.

APA

Wolfram Language. (2010). SingularValuePlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SingularValuePlot.html

BibTeX

@misc{reference.wolfram_2024_singularvalueplot, author="Wolfram Research", title="{SingularValuePlot}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/SingularValuePlot.html}", note=[Accessed: 21-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_singularvalueplot, organization={Wolfram Research}, title={SingularValuePlot}, year={2014}, url={https://reference.wolfram.com/language/ref/SingularValuePlot.html}, note=[Accessed: 21-January-2025 ]}