WOLFRAM

UnitBox[x]

represents the unit box function, equal to 1 for and 0 otherwise.

UnitBox[x1,x2,]

represents the multidimensional unit box function, equal to 1 if and 0 otherwise.

Details

Examples

open allclose all

Basic Examples  (4)Summary of the most common use cases

Evaluate numerically:

Out[2]=2

Plot in one dimension:

Out[1]=1

Plot in two dimensions:

Out[1]=1

UnitBox is a piecewise function:

Out[1]=1

Scope  (36)Survey of the scope of standard use cases

Numerical Evaluation  (6)

Evaluate numerically:

Out[1]=1
Out[2]=2
Out[3]=3

UnitBox always returns an exact result:

Out[1]=1

Evaluate efficiently at high precision:

Out[1]=1
Out[2]=2

UnitBox threads over lists:

Out[1]=1

Compute the elementwise values of an array using automatic threading:

Out[1]=1

Or compute the matrix UnitBox function using MatrixFunction:

Out[2]=2

Compute average-case statistical intervals using Around:

Out[1]=1

Specific Values  (4)

Value at zero:

Out[1]=1

Values at the points of discontinuity:

Out[1]=1
Out[2]=2

Evaluate symbolically:

Out[1]=1
Out[2]=2
Out[3]=3

Find a value of x for which UnitBox[x]=1:

Out[1]=1
Out[2]=2

Visualization  (4)

Plot the UnitBox function:

Out[1]=1

Visualize scaled UnitBox functions:

Out[1]=1

Visualize the composition of UnitBox with a periodic function:

Out[1]=1

Plot UnitBox in three dimensions:

Out[1]=1

Function Properties  (12)

Function domain of UnitBox:

Out[1]=1

It is restricted to real inputs:

Out[2]=2

Function range of UnitBox:

Out[1]=1

UnitBox is an even function:

Out[1]=1

The area under UnitBox is 1:

Out[1]=1

UnitBox has a jump discontinuity at the points :

Out[1]=1
Out[2]=2

UnitBox is not an analytic function:

Out[1]=1

It has both singularities and discontinuities:

Out[2]=2
Out[3]=3

UnitBox is neither nonincreasing nor nondecreasing:

Out[1]=1

UnitBox is not injective:

Out[1]=1
Out[2]=2

UnitBox is not surjective:

Out[1]=1
Out[2]=2

UnitBox is non-negative:

Out[1]=1

UnitBox is neither convex nor concave:

Out[1]=1

TraditionalForm formatting:

Differentiation and Integration  (6)

First derivative with respect to x:

Out[1]=1

All higher-order derivatives are the same:

Out[1]=1

First derivative with respect to z:

Out[1]=1

Compute the indefinite integral using Integrate:

Out[1]=1

Verify the anti-derivative away from the singular points:

Out[2]=2

Definite integral:

Out[1]=1

Integral over an infinite domain:

Out[1]=1

Integral Transforms  (4)

The FourierTransform of a unit box is a Sinc function:

Out[1]=1
Out[2]=2

FourierSeries:

Out[1]=1
Out[2]=2

Find the LaplaceTransform of a unit box:

Out[1]=1
Out[2]=2

The convolution of UnitBox with itself is UnitTriangle:

Out[1]=1
Out[2]=2

Applications  (2)Sample problems that can be solved with this function

Integrate a piecewise function involving UnitBox symbolically and numerically:

Out[4]=4
Out[5]=5
Out[6]=6
Out[7]=7

Solve an initial value problem for the heat equation:

Out[1]=1

Specify an initial value:

Solve the initial value problem using :

Out[3]=3
Out[4]=4

Compare with the solution given by DSolveValue:

Out[5]=5

Properties & Relations  (5)Properties of the function, and connections to other functions

The derivative of UnitBox is a piecewise function:

Out[1]=1

The derivative of HeavisidePi is a distribution:

Out[2]=2

Convert into Piecewise:

Out[1]=1
Out[2]=2

Multidimensional unit box function equals the product of 1D functions for each argument:

Out[1]=1
Out[2]=2

UnitBox can be expressed in terms of UnitStep:

Out[1]=1

UnitBox is a special case of BSplineBasis:

Out[1]=1
Wolfram Research (2008), UnitBox, Wolfram Language function, https://reference.wolfram.com/language/ref/UnitBox.html.
Wolfram Research (2008), UnitBox, Wolfram Language function, https://reference.wolfram.com/language/ref/UnitBox.html.

Text

Wolfram Research (2008), UnitBox, Wolfram Language function, https://reference.wolfram.com/language/ref/UnitBox.html.

Wolfram Research (2008), UnitBox, Wolfram Language function, https://reference.wolfram.com/language/ref/UnitBox.html.

CMS

Wolfram Language. 2008. "UnitBox." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/UnitBox.html.

Wolfram Language. 2008. "UnitBox." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/UnitBox.html.

APA

Wolfram Language. (2008). UnitBox. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/UnitBox.html

Wolfram Language. (2008). UnitBox. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/UnitBox.html

BibTeX

@misc{reference.wolfram_2024_unitbox, author="Wolfram Research", title="{UnitBox}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/UnitBox.html}", note=[Accessed: 10-January-2025 ]}

@misc{reference.wolfram_2024_unitbox, author="Wolfram Research", title="{UnitBox}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/UnitBox.html}", note=[Accessed: 10-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_unitbox, organization={Wolfram Research}, title={UnitBox}, year={2008}, url={https://reference.wolfram.com/language/ref/UnitBox.html}, note=[Accessed: 10-January-2025 ]}

@online{reference.wolfram_2024_unitbox, organization={Wolfram Research}, title={UnitBox}, year={2008}, url={https://reference.wolfram.com/language/ref/UnitBox.html}, note=[Accessed: 10-January-2025 ]}