BipartiteMatchingAndCover[g]
takes a bipartite graph g and returns a matching with maximum weight along with the dual vertex cover. If the graph is not weighted, it is assumed that all edge weights are 1.


BipartiteMatchingAndCover
BipartiteMatchingAndCover[g]
takes a bipartite graph g and returns a matching with maximum weight along with the dual vertex cover. If the graph is not weighted, it is assumed that all edge weights are 1.
Details and Options
- BipartiteMatchingAndCover functionality is now available in the built-in Wolfram Language function FindIndependentEdgeSet.
- To use BipartiteMatchingAndCover, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
Examples
Basic Examples (2)
BipartiteMatchingAndCover has been superseded by FindIndependentEdgeSet:
Tech Notes
Related Guides
-
▪
- Graph Algorithms ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), BipartiteMatchingAndCover, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatchingAndCover.html.
CMS
Wolfram Language. 2012. "BipartiteMatchingAndCover." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatchingAndCover.html.
APA
Wolfram Language. (2012). BipartiteMatchingAndCover. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatchingAndCover.html
BibTeX
@misc{reference.wolfram_2025_bipartitematchingandcover, author="Wolfram Research", title="{BipartiteMatchingAndCover}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatchingAndCover.html}", note=[Accessed: 09-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_bipartitematchingandcover, organization={Wolfram Research}, title={BipartiteMatchingAndCover}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatchingAndCover.html}, note=[Accessed: 09-August-2025]}